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Structural plates and shells are three-dimensional bones, one dimension of

which happens to be nmch smaller than the other two. Thus the quality of a

plate or shell model must be judged on the basis of how well its exact solution

approximates the corresponding three-dimensional problem. Of course, the exact

solution depends not only on the choice of the model but also on the topology,

material properties, loading and constraints. Tile desired degree of approximation

depends on the analyst's goals in performing the analysis. For these reasons mod-

els have to be chosen adaptively. Hierardfic sequences of models nmke adaptive



selectionof the modelwhich is best suited for the purposesof a particular analysis

possible.

The principles governing the formulation of hierarchic models for laminated

plates are presented. The essentialfeatures of the hierarchic models described

herein are: (a) The exact solutions correspondingto the hierarchic sequenceof

modelsconvergeto the exact solution of the correspondingproblem of elasticity

for a fixed laminate thickness,and (b) the exact solution of eachmodel converges

to the samelimit as the exact solution of the correspondingproblem of elasticity

with respectto the laminate thicknessapproachingzero.

The formulation is basedon one parameter(/3) which characterizesthe hierar-

chic sequenceof models,and a set of constantswhoseinfluencehas beenassessed

by a numerical sensitivity study. The recommendedselectionof these constants

results in the number of fields increasingby three for eachincrement in the power

of/3.

Numericalexamplesanalyzedwith the proposedsequenceof modelsare included

and good correlation with the referencesolutionswasfound. Resultswereobtained

for laminated strips (plates in cylindrical bending) and for squareand rectangular

plates with uniform loading and with homogeneousboundary conditions. Cross-

ply and angle-ply laminateswereevaluatedand the results comparedwith thoseof

MSC/PROBE.

Hierarchicmodelsmake the computation of any engineeringdata possibleto an

arbitrary level of precisionwithin the framework of the theow of elasticity.
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Chapter 1

Introduction

The use of fiber-reinforced composite materials in structural applications has stim-

ulated considerable research activity in the study of the mechanical behavior of

laminated plates and shells.

Structural plates and shells are three-dimensional bodies, one dimension of

which happens to be much smaller than the other two. Thus the quality of a

plate or shell model must be judged on the basis of how well its exact solution

approximates the corresponding three-dimensional problem. Of course, the exact

solution depends not only on the choice of the model but also on the topology,

material properties, loading and constraints. The desired degree of approximation

depends on the analyst's goals in performing the analysis. For these reasons models

have to be chosen adaptively.

There are two types of information which are of substantial engineering interest

in the analysis of laminated plates:
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1. The structural response (i.e. load-deflection relationships, shear forces_ bend-

ing moments, etc.) is characterized by the fact that laminated composites

typically have very. large bending modulus to shear modulus ratios.

2. The strength response (e.g. the conditions under which delamination occurs,

crack propagation problems, etc.) is characterized by the facts that at the

laminar interfaces the normal and shear stresses are continuous, hence the

shear strains are discontinuous, and stress singularities occur at external

boundaries.

Initially, the research efforts were focussed on the development of analysis tools

to predict the structural response of the laminates. Soon it was realized that the

classical plate model, extensively used for homogeneous isotropic materials, led to

considerable error when applied to laminated plates. The reason: the classicalplate

model fails to account for shear deformation effects, wlzich are of critical importance

when the materials have very large elastic modulus to shear modulus ratios.

Three-dimensional models are suitable for investigating the strength response

of laminated media, but they are computationaly demanding and not feasible for

practical problems. The alternative _was to develop two-dimensional models that

could give reasonable results. Of course what is 'reasonable' depends on the goals

of the computation. First-order and higher-order shear-deformation models were

developed to account for the effects of transverse shear strains. The terminology

used in connection with high-order models refers to the level of truncation of terms
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in a power series e,,cpansion for the displacements, rather than to the order of the

final system of differential equations. The first-order models are simple but only

adequate in predicting the gross response characteristics of the laminate for large

length-to-thickness ratios. They give poor approximation for thick plates and near

boundaries. Higher-order models are more cumbersome, but give more accurate

results than first-order models. The main limitation of these models is that they

do not allow for discontinuities in the slopes of the deflections at the interfaces of

laminae as predicted by the three-dimensional elasticity solution.

The discrete-layer models were derived to overcome the limitation of shear-

deformation models. They are based on assuming a displacement field which al-

lows piecewise linear variation of the in-plane displacements. They give better

results than shear-deformation models, and field more accurate interlaminar stress

distribution, even for very thick laminates. In general the number of differential

equations depend on the number of layers in the laminate, making them impractical

for large problems.

The approach developed herein combines the advantages of both, the shear-

deformation models and the discrete-layer models. It allows for discontinuities in

the slopes of the deflections at interfaces, and the nmnber of degrees of freedom

do not depend on the munber of layers in the laminate. Unlike any other model,

it also allows the construction of a sequence of models to satisfy the equilibrium

equations to the desired degree of accuracy. In the limit it converges to the fully
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three-dimensionalsolution. Dependingon the goals of computation, the analyst

c_an select the model that best fits the goals. Choosing progressively tfigher models,

the computational effort increases, but of course the accuracy in the results is

improved. If only structural response is required, a low-order model is generally

sufficient.

Hierarchic sequences of models make adaptive selection of the model which is

best suited for the purposes of a particular analysis possible. The advantages of

the proposed models became apparent when comparing the results obtained from

its implementation with those of the exact three-dimensional solution.

1.1 The Finite Element Method in Two Dimensions

The various plate theories (models) differ in the way tile transverse variation of the

displacement components is represented. The transverse variation of displacement

components and the number of fields are decided a priori. The problem is to find the

solution for the in-plane components of the displacement field. The finite element

method is used to find the solution of the resulting two-dimensional problem. The

following notation will be used: The solution domain is denoted by f_ and its

botmdary by F. An arbitrary displacement vector function defined on fl is denoted

by E, its cartesian components by u_, %, ttz. The strain energ,T of ff is denoted

by gg(_, the energy norm of if, by ]]_lE_u) and the set of functions on t2 which

satisfy the condition 5/(ff) < m is denoted by E(f]). The potential energy of ff
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is denoted by II(u-'). A subsetof E(f_) characterized by the finite element mesh

A and the polynomial degree of dements p, is denoted by Sp(A). The subset of

Sp(A) which satisfies the prescribed ]dne_,natic boundary conditions is denoted by

Sp(A). The subset of Sp(A) which vanishes on those boundaries where essential

boundary conditions are prescribed is denoted by S(°) (A) and the number of degrees

of freedom, the dimension of S_°)(A), by N v. The exact solution is denoted by flex

and the finite element solution is denoted by fiFE.

Numerous variational principles car, be employed for formulating the governing

equations of an elasticity problem. For example, the principle of minimum po-

tential energy, the principle of minimum complementary potential energy, and the

Hellinger-Reissner principle are commonly used. However the most generally used

formulation is based upon the total potential energy of the elastic body which can

be written as:

l-I(ff) =/W (u--')- .T(u-') (I.I)

where .T(ff) is the potential of the applied loads. Mi,mnization of 13 on a space of

admissible functions leads to a satisfaction of the equilibrium conditions. In the

finite element method a finite dimensional space Sp(A) C E(f2) is constructed and

gl is minimized on Sp(A). The resulting system of linear equations is represented

by

Izq
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where [A] is the stiffness matrix, {a} is the set of coe_dents which characterize

the finite element solution and {r} is the load vector which represents the applied

loads.

In this study the displacement formulation of the finite element method is em-

ployed in two dimensions. Proper selection of Sp(A) is important because the

performance of the numerical solution procedure depends on it. Most commonly

Sp(A) is constructed by one of the following approaches:

1. In the h-version the errors of approximation are controlled by mesh refine-

ment, that is the size of the largest element, usually denoted by hm_ is chosen

small enough so that the errors of discretization are sufficiently small. The

mathematical basis for this is the limit process:

5m ll_Ex - _FEIIE(n) -0. (1.3)
hm_--*O

2. In the p-version the errors of approximation are controlled by increasing the

polynomial degree of elements, that is the mesh is fixed and the lowest poly-

nomial degree assigned to elements in the mesh, denoted by Pmin, is chosen

large enough so that the errors of discretization are suffdently small. The

mathematical basis for tiffs is the li_fit process:

lira ]tffEX ff =0. (1.4)
Pn'un _ oo
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3. In the hp-version the errors of approximation are controlled by mesh refine-

ment and increase of the polynomial degree of elements. Therefore the h- and

p-versions are special cases of the hp-version.

Orderly sequences of discretization by mesh refinement, increase of the polynomial

degree of elements, or a combination of both, are respectively called tl-, p- and

hp-extensions. The term extension refers to the progressive increase of the number

of degrees of freedom in these processes.

The decision of whether the h-, p- or the hp-version should be used in a specific

case depends on the nature of the exact solution flEX. Further information related

to the subject may be found in [1].

Finite element models are comprised of three principal parts: Idealization, dis-

cretization mad extraction:

1. Idealization. Idealization consists of the selection of the appropriate theory.

and the generalized formulation. Examples of theories are the linear the-

ory of elasticity in two or three dimensions, en_eering theories of beams,

plates, shells and large displacement-small strain theory. Examples of gen-

eralized formulations are: the principle of nfinimtun potential energy and

the Hellinger-Reissner principle. Idealization, together with the input data,

completely determine the exact solution flEX.

2. Discretization. Discretization creates a family of functions Sp(A). In soN-

ing stress analysis problems, users of _fite element codes control the space
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Sp(A) and thereby the error of approximation.

users control both flEX and Sp(A).

8

In solving design problems,

Extraction. Extraction refers to the procedures used for the computation of

engineering data from the finite element solution. Computation of engineering

data involves tile computation of functionals such as stresses and stress inten-

sity factors. We denote the functionals of interest by _i(fiFE) (i = 1, 2,..., n).

These functionals provide the information on which engineering decisions are

based. It is important therefore that the errors in approximating these func-

tionals be acceptably small in the sense that they wiU not significantly influ-

ence engineering decisions. In general we would like to have:

_ (Ls)

where Ti is the relative error tolerance chosen by the analyst.

The analysis is completed when the computed data pass acceptance criteria set by

the analyst. When the data do not pass the acceptance test then the discretization

is modified, using infomlation generated in the previous cycle of analysis and a new

finite element solution is obtained.



1.2 Plate Models

In an increasing number of engineering applications, especially in the aerospace,

marine and automobile industries, the use of structural components made of lami-

nated composite materials has shown a great potential. The most attractive prop-

erties of the composite materials are the lfigh strength and stiffness to weight ratios

and their excellent fatigue strength, wtfich is combined with ease of fabrication and

resistance to corrosion.

Shear deformation effects are of critical importance in the analysis of laminated

composite plates and shells. For thick laminated forms, or in the presence of lo-

cal discontinuities, such as holes, reinforcements, etc., and at the boundaries, the

transverse components of stress and strain have a strong influence on its strength.

.at the boundaries, "boundary layer effects" occur that is, the stress distribution is

substantially different from the stress distribution in the interior.

Because the solution of the fully three-dimensional problem is computationaly

expensive, and not feasible for practical problems, several two-dimensional linear

approximations have been developed. Most of the ax-ailable methods of analysis

for multilayered anisotropic plates and shells are <x'tensions of the methods origi-

nally developed for homogeneous isotropic plates and shells, and are based on the

principle of virtual work in conjunction with an assmned displacement rid&
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Many laminated plate models have been proposed over tile years with vari-

ous degrees of success. In the following sections, a review of the most important

approaches will be presented. For each the review includes:

(a) Description and assumptions;

(b) Displacement field;

(c) Stress-strain law;

(d) Method for obtaining the governing equations;

(e) Advantages and disadvantages.

The notation used is consistent with the one used to present the proposed model

in Chapter 2 for the laminated strip.

Many writers refer to alternative representations of plates and shells as theories.

Thus, in the literature one encounters references to membrane theory, Kirchhoff the-

ory, Reissner-Mindlin theory, etc. It is better and more descriptive to use the word

'model' however, since one wishes to model the mechanical response by mathemat-

ical means of various solid objects, one dimension of which happens to be much

smaller than the other two.

1.2.1 Shear-Deformation Models

Most high-order models for laminated plates are extensions of the classical plate

model to account for the effect of the transverse components of strain in the plate.
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The classicalKirchhoff plate model,extensivelyusedhi the analysisof thin isotropic

plates,will lead to considerableerrorswhenapplied to laminated plates. Sincethe

transverseshearmoduli of modem compositematerials axevery low as compared

with the in-planemoduli, the transversesheardeformationbecomessignificant, and

cannotbeneglectedasin the caseof homogeneousisotropic materials. The classical

plate model underestimatesdeflectionsand overestimatesnatural frequencies.For

plates with length to thicknessratio of 10, for instance, the classicalplate model

predicts natural frequencies25%higher than thosepredictedby shear-deformation

models [2].

In this group of models,there are two main categories:The first-order shear-

deformation models, and the tfigher-order models. First-order models generally

provide reasonablegood results for the structural responseof the plate. However

they fail to accurately predict the through thickness stressesat discontinuities.

Higher-ordermodelsaremore accuratethan the first-order models,but also more

cumbersomeand computationaly demanding.

Shear deformation models do not account for continuity of the normal and

shearstresscomponentsacting on laminar interfaces. Lea_finatesare represented

ashomogeneous,orthotropic nkaterials,with the material propertiesselectedsoas

to accountfor the averageaxial, shearand bending stiffnessof the lanfinates.

In the evaluation of first-order plate models, the middle surfaceof the plate is

assumedto lie in the x - y plane. The two-dimensional domain occupied by the
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middle surfaceis denotedby fl and tile the boundary of _ is denotedby F. The

thicknessof the plate is denotedby h and the side surface of the plate is denoted

by S, that is: S - F x (-h/2, +h/2).

The displacement field is assumed to be of the form:

_ = _o(x,y)+_,(x,y)z (1.6)

% = _o(z,y) +u_,(x,y)z (1.7)

uz - uzlo(x,y) (1.8)

where u,lo(x , ), u.ll(x,y), uylo(x,y), etc. are functions to be determined.

The strain-displacement relations of the small displacement-small strain theory

are l.lS o:t:

e, - ax- ax + z

Ouy ouylo °uyl ' z
_ = --_ =-T + ay

Ouz = OUzlo = 0
cz = & Oz

(1.9)

(1.10)

(1.11)

%Y = a-'_+'-_"x =-"_-j + ax +z_ &j + c3x J (1.12)

au_ auz auzl0 (1.13)
7_z = a--7+ 0---7• = __1 + a---_-

cguy au_ OUzlo (1.14)
_,_z= s-Z+ a-;=%,,+-_-7

These models are, essentially, extensions of the classical plate model, which is

discussed first.
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1.2.1.1 The Classical Plate Model

The discussion of the classical plate model will follow the general outline of [1],

and it will elaborate on isotropic plates. The extension to laminated plates will be

included in the evaluation of the higher-order models.

(a) The classical plate model (CPM), also known as the IZdrchhoff-Love model

assumes that "Normals to the middle sudace of the plate prior to deformation

rema/ns straight lines and normal after deformation". This is equivalent to consider

negligible the tra_verse shear _tra_, i.e. _z = 7,z = 0 in (1.13)41.14).

(b) Under these conditions tile assumed displacement field reduces to:

couzto (1.15)
U_ll = cOx

cOuzl° (1.16)
uylx = - cO----y-

Assunfing transverse loading only, u_10 = uyt0 = 0, and denoting u.10 as w:

(1.17)
u_ll = - (9-"7

(1.18)
Uyll -- --_y

then (1.6)-(1.8) can be written as:

cOw

_tz _ - _x z

cOw

lLy -- ----_ Z

= w(z,y).

(1.19)

(1.2o)

(1.21)
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(c) The stress-strain relations of linear elasticity, with the assumption that the

stress az is negligible in comparison with cr_ and ay, are:

E E
= = (1.22)

r_y = G%y, r_z = G%z,

where E is the modulus of elasticity, u is the Poisson's ratio, and G _ E/2(1 + v)

is the shear modulus.

In the analysis of plates not the stresses but the stress resultants are of primary

interest. The stress resultants are tile membrane forces:

fx def F hI2 ._ Fh/2 ._ f+h/2= cr_dz, Fy def % dz, F_y = F_ def r_ dz
J-h/2 J-h/2 J-h�2

the shear forces:

Qz def f+hl2= - r_z dz
J-h/2

and the moments:

ae¢_ [+h/2
M_ = j-h�2 a_ z dz'

def F hI2Qy = - r_=dz
J-h/2

ZvIy = - J-h�2 au z dz

(1.24)

(1.26)

J-hi2 r_y z dz. (1.27)

M_, M_ are called bending moments; M_y is called twisting moment. From the

strain-displacement relations (1.9)-(1.14), the stress-strain relations (1.22)-(1.23)

and the stress resultants (1.24)-(1.27) we lvave:

F_ = ( l _ v 2) \ Ox +v (1.28)
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E h [_ cOu_lo __ ) (1.29)Fy - (1- _ ) \ --bV+

= Gh\ Oy + J

Ou'm_ (1.31)Q, = -Oh u,i, +--3V]

Qy= -Gh (uy,,+--_) (1.32)

Eh3{Ou,,,a__,)M, - 12(1- u2) \ Ox ÷ "_ (1.33)

My = 12(1- _,2) u + (1.34)

M,y = a h3(_ -L o%,,_12 + Ox ] (1.35)

From the consideration of equilibrium of a plate element of size z_kxx _y, we have

F,y = F_, and:

&V&
Ox

aM_y
Ox +_-

oqF, aF,_y _ 0 (1.36)
a-g +

OFy, OFy _ 0 (1.37)
ax +_

cOQ, cOQy _ q(x,y) (1.38)
b-g + ay

+ aM_y Q, = 0 (1.39)
Oy

amy
ay Q_ = 0. (1.40)

where q(x, y) is the transverse load over tile surfa_:e of the plate.

(d) The governing equations are obtained using the principle of virtual work. The

virtual work fommlation is obtained by multiplying (1.36)-(1.40) by test functions
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Vzlo , vy[0, Vzl0, Vzll and vyll, summing and integrating over domain f2. Upon inte-

gration by parts the following equation is obtained:

+ d dy+

Qzv_ll] dx dy +

cgx My Oy QyVyll dx dy

= /;qvzlodxdy + f (Fnv,,Io + Ftvtlo) dt -

/Qnl)zlodt_ / (l_/[nUull -[-MntVtll) dt (1.41)

where vnlo, vtlo are the normal and tangential components of the vector {v_10 vyl0 }

with respect to the boundary.

To obtain the standard form of the principle of virtual work B(u, v) = _'(v), the

expressions (1.28)-(1.35) are substituted for F_, Fu, Q_, Qy, .kI_, My, _bI_:yin (1.41).

In B(u,v), u now represents the trial functions u_10, uyl0, Uzl0, U_ll, uyl], and v

represents the test functions v,10, vyl0, v_10, v_tl, Vyl]. The trim and test functions

and their derivatives are square integrable so that all integrals are properly defined.

Substituting (1.19)-(1.21) into (1.41), the terms containing Q_, Qy cancel and the

following relationstfip is obtained:

+2(1- )OxOya o +J J_ k\

v dt

(1.42)
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where: E aed Q. + OM.tlc_, and

D dej Eh3

12(1 - u2) (1.43)

is the plate constant. The integrals are well defined if w and v have square integrable

second derivatives. Defining:

sLr° w°:'vS(w, v) a=_ D [Ox_Ox_

-4

and

@_@v+2(1- .) _ a_ 1
c3y20y2 cgxo_y cgxc_y J dx dy

(1A4)

i_'(v) def qvdxdy + M,-_dt- V, vdt. (1.45)

The set of functions for which 6(u, u) < c_ is denoted by E(fi). The statement of

the principle of virtual work depends on the boundary conditions. When tractions

are prescribed on the entire boundary then the principle of virtual work is stated

as follows: "Find w e E(f_) such that B(w, v) = .Y(v) for all v • E(f_)".

On the boundary of the plate either w or V, and either 0w/an or M,, are given.

The restrictions on w and 0w/On are the kinematic boundary conditions. Com-

monly used boundary conditions are: Fixed: w = Ow/an = 0; free: Mn = V, = 0;

simply supported: w = 0, M, = 0; symmetry: aw/cgn = _'_, = 0; antisymmetry:

same as simple support. Note that in the case of simple support w = 0 on F hence

c_w/_ = 0 also and therefore ut = 0 on S. Thus both tmlgential displacement

components are zero on S.
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(e) As observed earlier, the classical plate model represents well tile overall behavior

of isotropic plates in the interior regions for "large" length-to-thickness ratios. It

leads to considerable error near the boundaries and when analyzing laminated plates

because it fails in accounting for shear deformation effects.

1.2.1.2 First-Order Shear-Deformation Models

(a) The simplest of all the laminated plate models which are an improvement over

the CPM is the Reissner-Mindlin type model, which incorporates the effect of shear

deformation [3]-[4]. The introduction of shear deformation into a laminated plate

model was first accomplished by Stavsky [5], for isotropic layers with the same

Poisson ratios. Whitney and Pagano [6] investigated the application to laminated

plates consisting of an arbitrary number of bonded anisotropic layers, each having

one plane of material symmetry parallel to the central plane of the plate. They

found the deflections of the plate to be dependent upon the selection of the shear

correction factor, and that the stress distribution did not improve for low span-to-

depth ratios over that given by the CPM.

(b) In the Reissner-Mindlin model the assumed mode of deformation is represented

by the displacement components (1.6)-(1.8), and is described as follo,,_s: "4 plaz_e

section nonnad to the midcUe surface of the plate before deformation is a.sstuned

to remain plane but not necessarily normal to it after deformation. "..Assuming
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u_10 = uyl0 = 0 and defining 3_ = -u_ll, fly = -uy[1 and w = u_10:

_=-Z_(x,y)z, _=-Z_(x,y)z, _z=w(x,y) (1.46)

The physical interpretation of j3_ and fly is rotation.

(c) Again, the stress-strain relations of linear elasticity, with the assumption that

the stress az is negligible in comparison with as and a_, is used for each layer.

O'y "-

_y

7_z

oo1Q6 {}Q,: Q22 Q:6/ _
|

Q16 Q26 Q6_J %_

(1.47")

where Qij are the coefficients of the material stiffness matrix in the laminate coor-

dinate system. Shear correction factors are used for the transverse shear resultants

as discussed later. The definition of the stress resultants is the same as in (1.24)-

(1.27).

(d) The displacement field(1.46)predictsa uniform shear acrossthe laminae, which

isincorrect.This prompted the introduction of a shear correctionfactorinto the

shear stressresultmlt.The derivationof the principleof virtualwork isbased on

(1.41)and (1.al)-(1.as),however (1.31)-(I.35)are modified as foUo_ for the case

of cross-ply laminates:

M_ = - D,, _ + Dn 0y ] : D,,-_ + D12 _ (1.49)

M_ = - m,_-_ + D_ - D,__ + D_ _ (1.50)

(1.48)
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where the x is the shear correction factor and:

= F hI2
G1 J-hi2 Qss dz,

.-- ¢hl2
Dij J-hi2 Qij z 2 dz,

= F h/2
G2 j-h�2 Q44 dz

2O

(1.51)

(1.52)

(1.53)

i,j=l, 2, 6.

Various values have been proposed for _. For isotropic plates for example, Reissner

[7] proposed the value of 5/6. In [3] Mindlin considered the propagation of elastic

waves in isotropic plates and concluded that _ depends on Poisson's ratio, and it

'_ranges almost linearly from O. 76 for u = 0 to 0.91 for u = 1/2". In practice very

often the value _ = 5/6 is used, independently of Poisson's ratio. Modification of

the shear modulus by a shear correction factor _ is a modelling decision con_nonly

justified by the argument that the assumed linear variation of u_, uy with respect

to z leads to a plate model which is overly stiff in shear. Similar range of values

c_ be used for laminated plates depending on the material properties [6].

On substituting (1.49)-(1.53) into (1.41)we have:

(1.54)

where:

]3(_''_Y'tI');LtQx'(tQY"O) deal Dll OX
+



where v, p_, py are the test functions.

The commonly used boundary conditions are:

21

(1.55)

(1.56)

• Fixed: _,, =_ =w=0.

• Free: M. =M.t =Q. =0.

• Simply supported:

1. Soft simple support: w = 0, M,_ = _Im = 0.

2. Hard simple support: w = 0, fit = 0, Mn = 0.

• Symmetric: /J,, = 0, M,,t = 0, Q,_ = 0.

• Antisymmetric: Same as hard simple support.

Observe that in the Reissner-Mindlin model simple support can be defined in two

different ways, whereas in the Kirchhoff model only one definition is possible. In

the Kirchhoff model simple support means hard simple support.

(e) Despite the increased generality of the shear-deformation model, the flexnxral

stress distribution show little improvement over those of the classical laminated



22

plate model. Higher order terms are needed in the power series expansion of the

assumed displacement field to properly modal the behavior of the laminates.

The performance of the first-order shear-deformation modal is dependent on

the factors used to adjust the transverse shear stiffness. Several approaches have

been proposed for calculating the composite shear correction factors for different

laminates. Most of these approaches are based on matching certain gross response

characteristics, as predicted by the first-order model, with the corresponding char-

acteristics of the three-dimensional elasticity model [8]. The proposed correction

factors are functions of the lamination parameters only. They do not account for

the influence of the loading conditions in the distribution of the transverse shear

strains in the thickness direction.._ an attempt to incorporate the actual dis-

tribution of the transverse shear strains in the thickness direction, in calculating

the transverse shear stiffness, a predictor-corrector approach has been proposed by

Noor [9] which is outlined in the following paragraph.

The predictor phase consists of using a first-order shear-deformation model to

calculate the initial estimates for the gross response characteristics of the laminate

(vibration frequencies, average through-the-thickness displacement, etc.) as weU as

the in-plane strains and stresses in the thidmess direction. An initial set of com-

posite correction factors are required in this phase. Then, the three-dimensional

equilibrium equations and the constitutive relations are used to compute the trans-

verse stresses and strains as weU as the transverse shear strain energy distribution in
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the thickness direction. Tile correction phase consists of calculating the composite

shear correction factors by matdfing the integral of the transverse shear strain en-

ergy in the thickness direction with that obtained with the first-order model. These

composite correction factors are then used to adjust the transverse shear stiffness

of tile laminate to obtain better estimates for the gross response characteristics, as

well as for the distributions of displacements and in-plane stresses in the thickness

direction. The predictor-corrector approach appears to be effective for the determi-

nation of the global and detailed response characteristics of multi]ayered cylinders

[101, [111.

1.2.1.3 Higher-Order Shear-Deformation Models

To overcome the limitations of the first-order shear-deformation model, higher-order

models that involve higher order derivatives of the transverse displacements were

developed. These models proved to be more accurate but also more cumbersome

and demanding on computational resources. A significant amount of research has

been conducted in this field. For example, Whitney and Sun [12] included one

additional term in each component of the displacement field given by (1.6)-(1.8)

and derived the governing equations from Hamilton's principle. Lo, Ctwistensen and

Wu [13] included one additional term per field as compared with [12] and derived the

governing equations using the principle of stationary potential energy. This model

does not require the use of shear correction factors. Tim same displacement field was

used by Chomk-v_ and Avula [14] but they derive the governing equations based
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on the minimization of the total potential energyandusingthe Lagrangemultiplier

techniqueto constraint the displacementfunctions to satisfy the stressboundary

conditions. Red@ [15] and Reddy and Liu [16] proposeda similar displacement

field as in [13]and alsoimposeda parabolicvariation of the transverseshearstrains

through the thicknessto satisfy the zerotangential stresson the surfaceof the plate.

The principle of virtual displacementswasusedto derivethe equilibrium equations.

The equilibrium requirementsare not satisfied at the interfaces. Severalsurvey

paperscanbe found in the literature of laminated composites(seefor instance[10],

[11], [171).

The modelpresentedby Red@ [15]wasselectedasrepresentativeof the higher-

order shear-deformationmodelsto be evaluatedin what follows.

(a) This model accounts not only for transverseshear strains, but also for a

parabolic variation of the transverseshearstrains through the thickness,and con-

sequently,there is no needfor usingshearcorrectionfactors.

(b) the proposeddisplacementfield is given by:

_ = _0(x,y) + _,(x,y)z + _(_,y)z _+ _3(_,y)z 3 (1.57)

try --- ttyto(x,_]).q-_yll(X,y)z.-t-ttyl2(z,_])z2-.1-tZyi3(x,y)z3 (1.58)

_. = _z_0(x,y)=_(x,y) (1.59)

where u_10 , u, i1 , uyt0 , etc. are independent functions. The functions u_l_, uzl3, uyl2

and uyla are determined using the condition that the transverse shear stresses r_

and 7-y_ vanish on the top and bottom surfaces of the plate. For laminated plates of
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orthotropic materials, theseconditions are equivalentto forcing the corresponding

shearstrains to bezero. From the conditions %2(z = :t:h/2) = 7w(z = :l:h/2) = 0,

the following relations are obtained:

Uzl2 = Uvl2 = 0

uzl3 = 3h 2 U_ll +-O-x

uvla =-'_ uyll +

and the displacement field for Reddy's model thus becomes

(1.60)

(1.61)

(1.62)

_4 ' "_x ) ] (1.63)
//

_z = _(x,y) (_.6_)

(c) The constitutive equations incorporate the assumption that each layer possesses

a plane of elastic symmetry parallel to the x-y plane. The constitutive equations

for a layer are written in terms of the plane-stress-reduced elastic constants in the

material axes of the layers. After transformation, the lamina constitutive equations

are ex'pressed in terms of stresses and strains in the global coordinates as follows:

cry -- QI2 Q22

w_ LQ_ Q_

IQ44
T_z LQ_

Q'G/Q26 _g

Q66 7zy

(1.66)

(1.67)



26

The stressresultants axedefinedasin (1.24)-(1.27),but becauseof the addi-

tional terms in the displacementfield selected,five extra resultants need to be

defined. Theseare:

Pt_ def F hI2 .-- F hI2= z2r_ dz, p_ def z2ryz dz (1.68)
J-h/2 J-h�2

p_ def F hI2 _ F hI2 = F hI2= z3a_ dz, py def Z30"y dz, p,_y def Z37zy dz (1.69)
J-h�2 J-h�2 J-h/2

(d) As established before, the equilibrium equations are obtained using the principle

of virtual displacements, i.e.,

(a_ 6_ + ay 6% + %y 6%y + _'_z 6%z + "ryz 6%z ) dy dx dz

+/;q 6w dx dy = 0 (1.70)

where the integration is performed over the entire domain of the plate. Introducing

strain relations similar to (1.9)-(1.14) and the stress restfltants mentioned above,

(1.70) can be written as:

[ 4 ['06u,jl 026w_] 06uy m
f;{F_O6-_x '° +M_O_" +P*[-T_\ _zz + Ox2 ]J +F_ Oy

)j )

+ ]VI, _ ( O I1+ _x ] + P_:Y[ 3h2\ o_y + Ox +2

 ,.}dxdy = o+Re [-_ (6u_,, + Oz]] q (1.71)
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Integrating by parts and collecting the coefficients of 6u,10 , 6uyl0, 6w, 6u,ll, and 8uyll,

five equilibrium equations are obtained in terms of the stress resultants.

OF. OF,y
Tx +---_---- = 0 (1.72)

OF_,, 0F__ o (1.73)
Oz + O---_"-

OQ, a_._y 4 [OR_ ._.) 4 [02P, _ c32P_y 02Py_o____+__ +q_ ._ \--_ + + _--__--_-_+ _a-7_ +--_-j = o (1.74)

OM, OM, y 4 4 fOP, OP, y'_o-7- + oy Q'+ R_-_-_t,-57-_+-57) =° (1.7_)

OM, y OMy 4 4 ['OP, y 0_.._,)Ox +---_'--Qu+-_ R_ 3h2k,--_--x +-- =0 (1.76)

Finally, the stress resultants are related to the strain components and further to

the generalized displacements, and the solution can be obtained after application

of the boundary conditions.

Reddy's model requires a total of six boundary conditions per edge. These

include u01, or F_, u01_ or F,s, w or Q,,, Ow/On or P,, ull,, or M,, ull,_ or M,_.

(e) Reddy applied the above model to obtain exact results for simply supported,

symmetric cross-ply rectangular plates. These results were compared with the

three-dimensional elasticity solutions of Pagano [18] and with those obtained using

the first-order shear-deformation model of Ready and Chao [19]. It was shown that

the higher-order model gives stresses that are greatly improved over those given

by first-order shear-deformation model. However the shear stresses obtained were

found to be on the low side of the values given by the three-dimensional solution.

This error may be due to the fact that continuity of stresses azross the interfaces

was not imposed.
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1.2.2 Discrete-Layer Models

,_dl laminated plate models discussed above, assume that the displacements vary

through the thickness of the laminate according to a single expression, not allo_g

for possible discontinuities in the derivatives of the displacements at the interfaces of

adjoining laminae. In the discrete-layer models the displacement field is ex'pressed

as piecewise linear functions in the thickness direction. Some of the work in this

line is briefly described in the following paragraphs.

Srinivas [20] considered an arbitrary number of layers, and described the dis-

placement field as continuous and piecewise-smooth functions (smooth within each

layer). No shear correction factors were introduced, but the number of fields equa-

tions and edge boundary conditions depended on the number of layers.

Di Sciuva [21] proposed a displacement field which allows piecewise linear vari-

ation of the us and uy displacements, and constant value of the u_ displacement

component. The assumed displacement field also allows the contact conditions at

the interfaces to be satisfied, thus reducing the number of displacements parameters

to five. This model does not require the use of shear correction factors, and the

governing equations are obtained using a variational principle. The normal stress

in the thickness direction is neglected, and as a consequence, local effects, such as

boundary layer effects, geometric discontinuities, etc., are beyond the capabilities

of the model. A multilayered artisotropic flat plate element was developed by Di

Scinva [22] by nmking use of tlfis formulation. The finite element is a rectangle
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with 32 degreesof freedomwhich include extension,bending aid transverseshear

deformation. Nmnerical tests carried out by Di Scuva on two sample problems

show that the element is very efficient in predicting gross response of thin and

thick laminated plate under static loading.

Toledano and Mur_ [23] developed a model for arbitrary laminate configu-

rations based upon Reissner's [24] new mixed variational principle for displacements

and transverse stresses. They asslmled a piecewise-linear in-plane displacement dis-

tribution to guarantee continuity of interlaminar stresses. Transverse displacements

are taken to be constant throughout the entire thickness of the plate. Therefore,

shear strains are constant within each layer, but differ from layer to layer. The

transverse stresses are assumed to be quadratic functions of the local thickness co-

ordinate across each layer. The application of Reissner's new principle results in

automatically fielding the appropriate shear correction factors for the transverse

shear constitutive equations. Numerical results were obtained for symmetric, anti-

symmetric, and arbitrary laminates in cylindrical bending and were compared with

the exact three-dimensional elastidty solutions. A good agreement was observed

between the two sets of results. The main shortcoming of this model is tlmt the

number of field equations and boundary conditions depend upon the number of

layers.

Bhaskar and Varadant [25] also proposed a model using a piecewise displacement

distribution for symmetric laminates subjected to antis mnmetric loading. For the
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u. and % displacement components they selected unknown functions of the in-plane

coordinates, multiplied by pre-defmed polynomials of degree three in the transverse

direction and multiplied by the Heaviside Unit Step Function and summing over

the plate interfaces. The variation of uz is assumed to be quadratic in z, and the

same for all layers. The assumed displacement field satisfies the displacement com-

patibility at interfaces and the zero shear condition on the free surfaces of the plate.

Stress continuities at interfaces are also enforced to solve for the functions of the

in-plane coordinates. The principle of minimum total potential is used to derive

the governing equations. The total number of independent variables is four. The

model was compared with the exact three-dimensional elasticity solution of a lami-

nated strip under cylindrical bending for large (L/h = 50) to medium (L/h = 12.5)

length-to-thiclmess ratios. The agreement between the two sets of results is very

good.

Barbero and Reddy [26] developed a model allowing for piecewise approximation

of the displacements through individual laminae. For the u_ and % displacement

components they assume one function which depends on the in-plane coordinates

x and y, and represent the displacement of the reference plane of the laminate,

and other set of functions depending on x, y and z, which x-anish in the reference

plane. These later functions are e.x-pressed as a linear combination of tmdetermined

functions of (x, y) and known functions of z. The ntm_ber of these later functions

depending on the number of layers. Traasverse displacements are taken to be
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constant throughout the entire tlficknessof the plate. The proposeddisplacement

field has the form:

u_(x,y,z) = u,_(x,y)+U,:(x,y,z) (1.77)

u,(x,>z) = ,_(x,y) +U_(x,>z) (1.78)

_(_,y,z) = _z(_,y)=w(_,y) (1.79)

where u_(x,y), uy(x,y), u_(x,y) are the displacement of a point (x,y,O) on the

reference plane of the laminate, and U_ and Up are functions which vanish on the

reference plane:

u_(_,y,0)= u, (x,y,o)=o

The functions U, and Uy are expressed as:

(1.80)

11

U,(x,y,z) = _U_(x,y)#)j(z) (1.81)

n

Uy(x,y,z) = _U_(x,y)cpj(z)= (1.82)

where ¢1 are any continuous functions that satisfy the condition:

¢j(0) =0, j=l, .,_ .... n. (1.83)

In a finite element approximation, 0j denote tile global basis functions.

The equilibrium equations are derived using the principle of virtual displace-

ments, rendering a set of (2n + 1) differential equations, n being the nunaber of

layers through the thickness. The same nmnbex of boundary conditions need to

be specified. The application of this model to a two-layer cross-ply plate strip in
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cylindrical bendingand to a rectangularplate of threeorthotropic layersshowexcel-

lent agreementwith the correspondingthree-dimensionalelasticity solutions. The

modelgivesaccurateinterlammarstressdistributions, evenfor very thick (L/h = 4)

plates. The main shortcomingof this model is that the number of equations and

boundary conditions dependon the numberof layersin the laminate.

1.2.3 Hierarchic Models

The first rigorousproof of the relation betweenthe three-dimensionalsolution and

the plate model wasgiven by Morgenstern [27] in 1959. The construction of hier-

archic models for homogeneousisotropic plates and shellswasdiscussedby Szab6

and Sahnnann in [28]. Additional discussionand examplesare available in [29],

[11,[30], [311. In tiffs work the principles governingthe derivation of a hierarchic

sequenceof models for laminated compositesare presented. Onceagain, the ex-

act solution correspondingto eachparticular model is viewedas an appro_nation

to the problem of elastidty in wtfidl the elastic body is comprisedof orthotropic

laminae. The basisfor approximation is the degreeto wtfich the equilibrium equa-

tions of the problemof elastidty aresatisfied. Hierarchicsequencesof modelsmake

adaptiveselectionof the modelwifidl is bestsuited for the purposesof a particular

analysispossible.

The essentialfeaturesof the lfierardfic modelsareasfollows:

1. The exact solutionscorrespondingto the hierarchic sequenceof modelscon-

verge to the exact solution of the correspondingproblem of elastidty for a



fixed laminate thickness,

33

lim Ilu( DI- u(EHxMI')IIE( )= 0
1"-* O0

where i represents the ith model of the hierarchic sequence and 11" HE(n) is

the energy norm.

2. The exact solution of each model converges to the same limit as the exact so-

lution of the corresponding problem of elasticity with respect to the laminate

thickness (h) approaching zero.

lira []U(E_xMIi)-- u(_D)[IE(m = 0, i = 1, 2,...

3. When u(_D) is smooth:

llu x "lllElal
C h,_

where C is a constant, independent of i; ai is a constant which depends on i,

and (3_i+ 1 ) Odi.

These requirements are important because, typically, the solution of the problem

of elasticity in the interior regions of the domain call be appro_mted well by the

lowest in the hierarchic sequence of models but near the boundmies higher models

are needed.

In order to focus on the essentials, the derivation for the case of laminated strips

is presented first (Chapter 2), and the more general case is presented in Chapter 4.
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Chapter 2

Laminated Strip

As mentioned earlier, hierarchic models for homogeneous isotropic plates and shells

were discussed by Szabd and SaSnnann in [1]. The hierarchic models proposed in [11

satisfied the requirements 1 and 3 indicated in Chapter 1, but satisfied requirement

2 only in the case of zero Poisson's ratio. The modifications needed to satisfy

condition 2 were clarified later by Babu_ka and Li [2]. Additional discussion and

examples are available in [3], [4]. In this Chapter the principles governing the

derivation of a hierarchic sequence of models for laminated strips are presented.

Once again, the exact solution corresponding to each particular model is viewed

as an approximation to the problem of linear elasticity in which the elastic body

comprises orthotropic laminae. Tile basis for approximation is tile degree to which

the equilibrium equations of tile problem of elasticity are satisfied.

In order to focus on tile essentials, the derivation presented herein is for the case

of laminated strips only. Since plane-strain conditions are considered, tlfis problem
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represents a particular case of tile three-dimensional elasticity problem. The more

general case will be presented in Chapter 4.

2.1 Hierarchic Models for Laminated Composites

Consider the infinite strip shown in Fig. 2.1, consisting of three or more laminae

which are symmetrically arranged with respect to the middle plane. The following

assumptions are made with respect to the the load:

1. The load q(x) is antisymmetric with respect to the middle surface.

2. The load q(x) = 0 for Ixl >_ L/2, L is some fixed number.

3. The equilibrium equations are satisfied:

_J_ q(x)dx =0 _ q(x)xdx =0. (2.1)

Assumptions (2) and (3) are introduced so that boundary conditions do not

have to be considered. Boundary conditions will be discussed separately. We wiU

be interested in the limiting process h/L --, O. Observe that fixing L and letting

h --* 0 is equivalent to fixing h and letting L _ _c.

Let u_(x, y), uy(x, 9) denote the displacement field for die i_ffinite strip under

the normal load q(x), satisfying the equihbrium equations (with zero body forces):

ox +-N- = 0 (2.2)

8r_y 8_

0 • =0 (2.a)
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K_r_

Figure 2.1: Infinite strip. Notation.

and with boundary conditions:

1

a_(x,=kh/2) = -_ q(x) (2.4)

,_(x, +h/2)=o. (2.5)

The stress-strain relations of two-dimensional elasticity are used:

_ = E_¢, + E2ey + E47_y

_y = &e, + E3cy + EsT, y

r,y = E4e, + EsEy + E6%y

(2.6)

where the Ei are only function of y, and the strains are related to the displacements

(small-strain, small-deformation theo_) by:

e_ = 0--_

OUy

_y _ -_y

V_y --
Oy

(2.7)
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We now consider a partial Fourier transformation of the problem described by

(2.2)-(2.5). For any integrable function q(x), we can write the Fourier transform

as:

Q(Z)= _]_q(_)_-'_ dx

therefore, conditions (2.1) are represented by:

dQ(/3)
Q(O)=o, _ __-o

From (2.8) we find that:

(2.8)

=0. (2.9)

Q'(_) = i8Q(/3) (2.10)

that is, the derivatives become multiplications by i/3 in the Fourier transformed

variables. The partial Fourier transformations of u_, uy axe denoted by:

¢(9,y) = .F_°_(_,y)_ -'_ d_ (2.11)

F:o_(_,_) = _y(x,_)e-'_dx. (2.12)

Therefore, the strains in the transformed variables are obtained using (2.7) and

(2.11), (2.12):

_, = i/3¢(/3,y) (2.13)

iy = _'(/3,y) (2.14)

:'/,y = ¢'(/3,y)+i/3._(/3, y) (2.15)

where the primes represent differentiation with respect to y. Substituting (2.13)-

(2.15) into (2.6), and considering the case £74 = E5 = 0 (wtfi& is the case for
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orthotropic materialswhen the material axesareparallel with the x - y axes), the

equilibrium equations (2.2), (2.3) can be written as:

-_2E,¢ + i_¢' + (E6¢')' + i_(E6¢)' = 0 (2.16)

-/32E6_+i/3(F-_¢)'+(E3_b')' +i/3E6¢' = 0 (2.17)

which are the Fourier transformed forms of equations (2.2), (2.3). Further, (2.4)

and (2.5) become:

1

i_3F__(h/2)¢(fl, h/2)+ E3(h/2)_'(fl, h/2) = [Q(_) (2.18)

E6(h/2) ¢'(/3, h/2) + i /3 E6(h/2) _(/_,h/2) = O. (2.19)

Note that for any fixed/3, (2.16)-(2.19) is a parameter-dependent boundary value

problem on (-h/2, +h/2), with parameter/3. Solving (2.16)-(2.19), the displace-

ment components u_, u_ are obtained as the inverse Fourier transform of ¢(/3, y),

_(9, Y)-

Formally, (2.16) and (2.17) can be alternatively obtained by assuming the dis-

placement field to be of tile form:

= e(,_,_)e'_ (2.20)

= _(/3,y)¢_ (2.21)

where/J_, b/u are complex functions, mid both the real and imaginas 3, parts repre-

sent admissible displacements. In such a case, using (2.6) and (2.7) into (2.2) (2.3),

the following equilibrium equations are obtained:

e'_{-/32E_¢ + i _'3E.2g,' + (E60')' +i_3(E6_)'} =0 (2.22)
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eiZ_{-_2E6_ + i ¢3(F_441)' + (E3_')' + if3E6¢'} =0. (2.23)

These equations must hold for any choice of x. Therefore, they are formally identical

to (2.16), (2.171.

The displacement field minimizes the potential energy functional

1-I(u) = _/3(u, ul-.Y'(u) (2.24/

over the subspace E" (f2):

nl r12

where Cj, _j are given fimctions. If we denote the exact solution of the model of

order r_ by ff_x, we select the functions Cj, _j such that the modeling error:

IlffEX -- UEXIIE'_(n) _ 6(?2) h °" (2.26)
"*BII ExIIE-( )

i.e., the relative difference between the model of order n (different ni for u_ and u u

are possible) and the exact solution in energy norm, is such that _, is not larger for

any other set of functions Cj, _j. The optimal functions are those which maximize

the rate of convergence (c_,,) of the model of order n.

It has been shown in reference [5] that the functions 0(/3, y), W(/3, y) admit

an expansion about/3 = 0 with coefficients which are certain functions of y, and

that the 41j, _j in (2.25) must be these coefficient ftmctions to n_xinfize c_,_. It is

also shown in [5], that it is not necessary to use the boundary conditions (2.18),

(2.19), only the homogeneous equations (2.16) and (2.17) are needed to obtain these

functions.



The functions ¢(3, Y) and _(_, y) are complex functions of the form:

4O

¢(9, y) = ¢o(9,y)+ i ¢b(9,y)

¢(9, y) =¢_(Z,y) + i ¢_(Z,y)

(2.27)

(2.28)

where ¢_, Cb are antisymmetric real functions, and _b_ and _ are syrmnetric real

functions with respect to the middle surface of the strip, i.e. the x-axis. Expanding

¢(_, y), _b(_, y) into a power series with respect to 3:

¢(/9,y) = [¢_o(y)+i Cbo(y)]+13[¢_,l(y)+i ¢bl(y)]+/32[¢_2(y)+i Cb2(y)]+'-- (2.29)

_(/3,y) = [_ao(y)+i g;bo(Y)l+t3[_,(y)+i _bl(y)]+/32[_,2(y)+i _Pb2(y)]+" • • (2.30)

On substituting (2.29) and (2.30) into the equilibrium equations (2.16) and (2.17)

and separating into real and imaginary parts we have:

The real part of (2.16) is:

(E6¢'o)' + Z[(E6¢',)'- (E6_o)'- _;o] +

:2 t ! )1 _!+ 3 [(E_¢_2)- (Eo_b, - _'b, - E_o] +

@3r,'_ ._, v ! _+ t_ _'_J -(E_b2)'- _b2 E_]+... =0. (2.31)

The imagiimry part of (2.16) is:

+ 9[(z_;_)' + (E_oo)' + _V'ao]+

+ _[(z_e;_)' + (E_eo,)'+ F_U_- E,¢_o]+

+ _3 [(E6063) +(E_oJ'+ 2=_2- E_eb,]+ 0. (2.32)
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(Sago)' + t_[(E3'_al)'--E6¢b0-- (r---'2¢b0)']+

+ /3_[(E3V&)'-- (E_¢b,)'-- E6¢11- E6Wao]+

+ /3a[(Ea_b'_3)'- (EaCh2)'- E6¢_2- E6_bal]+... = 0. (2.33)

The imaginary part of (2.17) is:

(&¢_o)' + /3[(E391)'+ Z_¢'oo+ (E_¢oo)']+

+ /3_[(E392)'+ (_¢_1)' + E6¢'_,- E66bo]+

"JC _3[(Z3_b3 )' "3t- (Z,2¢a2)' -_- E6¢ta2 - E6t_bll'af "''" -'0. (2.34)

These equations hold for any choice of/3. In nnny practical problems the

material properties are symmetric functions of y, for example, as noted earher,

the strip may comprise laminae which are symmetrically arranged with respect to

the x-axis. For the sake of simplicity oirly the sy_mnetric case is considered in the

following.

2.1.1 The Model Characterized by/30

Setting _3 = 0 in equations (2.31) to (2.34) we have:

(E_¢'a0)'=0, (&¢_0)'=0 (2.35)

(E.,VYo)'= o, (E,_o ')' = 0 (2.36)

Knowingthat Cao(y)and Cbo(y)are antisynunetric and W_o(Y)and g'bo(y)are sym-

metric, and integrating, we have:
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Coo(y)= aoF0(y), Cbo(y) = bo Fo(y) (2.37)

_oo= co, Obo= do (2.38)

where

Fo(y)d_f;

Referring to (2.25) the case/3 = 0 yields:

1
dt. (2.39)

E_(t)

,_(z,y) = ,_,(_)Fo(y) (2.40)

uy(x,y) = u_io(X). (2.41)

The real and imaginary parts are not linearly independent, hence both lead to the

same functional form. One possible choice for Uxll, UylO are constants. For instance:

ux -- aoFo(y)

uy : Co

(2.42)

(2.43)

and the strain terms corresponding to these displacement components are e_ = 0,

ey = 0, %y = ao Fo' where, as before, the prime represents differentiation with

respect to y. This corresponds to constant shear stress, specifically: _-_y = ao.

Observe that this displacement field casl represent rigid body displacement but

cannot represent rind body rotation. V_aen E6(y) = E6 is constant then tNs

model is capable of representing rigid body displacement and rotation. Tlfis is

because the displacement components

_ = c, +Gy (2.44)



uy= C2-C_x,

where C1, C2, Ca are arbitrary constants, are represented by the model.
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(2.45)

Never-

theless, the model represented by (2.40), (2.4I) is not a member of the hierarchic

sequence of models because it does not satisfy the requirement that the exact so-

lution of each member of the tfierarchy must converge to the same limit as the the

exact solution of the corresponding problem of elasticity with respect to h --, 0.

This point will be discussed in greater detail in Section 2.4.1.

2.1.2 The Model Characterized by fll

To find the mode of deformation for the model which satisfies the equilibrium

equations up to the first power of fl, we differentiate equations (2.31) to (2.34) with

respect to fl and let fl = 0. In this case tile following equations are obtained:

(E6¢'_1)'- (E6_&o)'- E2_b;o= 0 (2.46)

(E6¢;,)' + (E6_b.o)'+/7_<0 = 0 (2.47)

(E3<,)'- E6¢_0- (F_¢b0)'= 0 (2.48)

(F__,)' + E6¢'_0+ (Ea¢.0)' = 0. (2.49)

Using (2.38), (2.46) can be written as:

[E_(¢'_,- Vb0)]'= o.

Solving for Cal (Y) and using the fact that _)_(y) is antisynm_etric:

(2.50)

E6(8'_1 - g)b0) ----a, (2.51)
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6'_1= a-L+do
E_

¢_1(y) =al _tE6't-'--'-_dt+cloy

¢_,1(Y) "- ax Fo(y) + cloy.

(2.52)

(2.53)

(2.54)

From (2.47), using (2.38):

[E_(¢h+ _oo)]'=o (2.55)

E6(¢_1 +_a0)--bl

bl

_b_(y) = b, to(y) - coy.

(2.56)

(2.57)

(2.58)

From 2.48), using (2.37):

3_1J = bo+ (_¢bo)'. (2.59)

Integrating once:

E3V)'_I=boy +boEa Fo(y)+ f_ (2.60)

and solving for _b_l:

t_)al (Y) -bo E3(t) _(t) E_(t)

Since the third term is antisymmetric, fl = 0. Then,

dt + q. (2.61)

_ol(y) = b_F_(y) + cl. (2.62)

Similarly, integrating (2.49) tMce:

_'bl(Y) = -ao F_ (y) + dl (2.63)
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Fl(y) def;= _a(t)t dt 4" foy E3(t)F-_(t)Fo(t)dt.

The displacement field in tiffs case is given by:
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(2.64)

Ux(X,y) -- Uz[I(X)r0(y )'_t-uzl2(x)y (2.65)

Uy(X,y) = Uyl0(X) +UyI2(X) FI(y). (2.66)

Further discussion of this model is deferred to Section 2.4.2.

2.1.3 The Model Characterized by

To find the mode of deformation corresponding to the model which satisfies the

equilibrium equations up to the second power of fl, we differentiate equations (2.31)

to (2.34) with respect to fl twice and let fl = 0. The following equations are

obtained:

(E6¢'a2)'- (E6_bl)' -- F--2_)_1 -- E1¢,_,o =0 (2.67)

(&Oh)' + (E6_1)' + E_v)'o,-E,Obo=0 (2.68)

(E_V'J- (&¢b,)' - E_41 - E_oo =0 (2.69)

(E_u)h)'+ (E_¢o_)'+ E6¢'o_---rG_'bo=0. (2.;o)

Upon integrating, the following results are obtained:

(Pa2(Y) _- a0 f2(y) +dl y -k- a2 _0(Y) (2.71)

*be(Y) = b0 Fz(y) - c, y + h2 F0(y) (2.72)



and

Vo_(y)=5,S (_)- cor_(y)+ c2

_b2(Y) -" -al rl (y) - do r3(y) + d2

where:

{1 [
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and

(2.73)

(2.74)

_(t) E_(t) ] }E3(t)t E3(t) Fo(t) dt- rl(t) dt (2.75)

F_(y)aof; _(t)= Ea(t)tdt.

Therefore the displacement field can be written in the form:

(2.76)

u,(x,y) = u,ll(x)Fo(y)+u,12(x)y+u,13(z)F2(y) (2.77)

Uy(_,y) "-- IZylO(X) + Uyl2(X)Fl(y) --_Uyl3(x) F3(y). (2.78)

This mode of deformation satisfies both the real and imaginary parts of the equi-

librium equations up to the second power of ft. By continuing this process, the

equilibrium equations can be satisfied to an arbitrary powder of ft. For additional

details, see Appendices A and B.

2.2 The Boundary Layer

The foregoing analysis was concerned with an iiffmite strip and therefore the bound-

ary conditions did not have to be considered. Temls wtfich can be neglected for

an infinite strip caal be vew significmlt near the bomldary of a strip of filfite size,
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however. Therefore, in the neighborhood of boundaries, the exact solutions of low-

order models can differ very substantially from one another and from the limiting

case, i.e., the exact solution of the problem of elasticity. This sensitivity of exact so-

lutions corresponding to various models in the small neighborhood of the boundary

is called the boundary layer effect or edge effect.

Boundary layer effects are important from the point of view of engineering

analysis because often the goal is to determine moments and shear forces at the

boundary where the solution is model-dependent. An analysis of boundary layer

effects for the Reissner-Mindlin plates is available in [6]. In the case of laminated

plates the problem is even more complicated, due to the singularities caused by the

material interfaces. To account for boundary layer effects, it should be possible to

expand the laminate model near the boundary: The power of 3 near the boundary

should be larger than the one used in the interior regions of the laminate. The

answers to the questions: How much larger it needs to be, and what power of ,Z3is

large enough far from the boundaries, are problem-dependent and can be found, in

general, at the end of an adaptive process only.

Hierarchic models provide a framework for adaptive controh Let us rewrite

(2.77), (2.78) in the following form:

= u_l,(x)J'_(y)+ u=12(x)f2(y) +u=la(:_')f3(y) +..- (2.79)

-- _ZylO(2:) "4-ZZyl2(:E)g2(Y)"t'-_y[3(X)g3(_)"t-""" (2.80)
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where fl (Y) - Fo(y) and f2(Y) = O_l fl (Y) + a2 y with al, c_2 selected such that

f2(y) is orthogonal to fl (y):

__h h/2
/2 fl(y)f2(y)dy=O. (2.81)

Similarly, f3(Y) = al fl(y)+a2.f2(y)+a3F2(y) with al, a2, a3 selected such

that f3(y) is orthogonal to fl (y) and f2(y), etc. In this way on the Iota element

(xk < x < xk+l) we expect:

xk+t 2u,t i dx _ 0 (2.82)
JXk

as i _ _ very fast on those elements where the solution of the problem of elasticity

is smooth and slowly where it is not smooth. Adaptive selection of models is based

on making measures, such as this, very nearly equal over the entire solution domain.

2.3 Boundary Conditions for Hierarchic Models

The main motivation for using hierarchic models is to make adaptive control over

errors of idealization possible. The sequence of exact solutions corresponding to a

hierarchic sequence of models converges to the exact solution of the model based

on the theory of elasticity. Since the exact solution depends on the boundary

conditions, proper interpretation of the boundary conditions is inlportmlt. In engi-

neering analyses the choice of boundary conditions is usually a modelling decision,

i.e., a convenient simplification of some possibly complicated physical conditions.

In using hierarchic models the choice of boundary conditions must be such that the
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solution of the problem of elasticity exists. Also, sincethe choiceof boundary con-

ditions affects tile smoottmessof the exact solution, hencethe degreeof difficulty

encounteredin controUing the errors of discretization, if modeling considerations

allow alternative choicesthen the interpretation leading to the smoother solution

is preferable.

Consider,for example,the problem of enforcing the boundary condition which

allows no transverse displacement but allows rotation of the laminated strip at

(say) x = g. In the terminology of structural analysis this is called simple support.

There are several possible interpretations. One possible interpretation is: u,_(g, y)

is unrestricted and:

= = =... = o (2.83)

i.e., the transverse displacement of every point of the strip is zero at x = 6. Another

possible interpretation is: u_(g, y) is unrestricted and:

_/2 '%(e, y) dy = 0 (2.84)
/2

i.e., only the average displacement in the y-direction is set to zero.

Certain interpretations of simple support are ruled out by the condition that the

corresponding problem of elasticity would not have a solution. Thus the condition

u_10(g ) = 0, with Uyli(g ) (i = 2, 3,...) are unrestricted, is generally not adn_sible

because this would correspond to a point support. Point supports are permissible

as constraints against rigid body displacements and rotations only.



Analogous considerationsapply to other types of boundary conditions.

further discussionwe refer to [3].
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For

2.4 The Limiting Case with Respect to 3 ---* 0

One of the requirements for the hierarchic models is that the exact solution of each

model must converge to the same limit as the exact solution of the fully three-

dimensional model when the laminate thickness approaches zero.

In the following Section it is shown that the exact solutions of the models

corresponding to/:_ and fll differ from the exact solution of models corresponding to

L_ with n > 2, when fl ---, 0 unless some coefficients of the material stiffness matrix

are modified. Guidelines are established for modifying the material coefficients such

that the requirement represented by the equation:

lira Ilu(EHMti)-- u(_)llE(a) = 0, i = 1, 2,... (2.85)

is satisfied. This is a generalization of the rationale used in the construction of the

Reissner-Mindlin model for isotropic strips outlined in [3].

2.4.1 The Model Characterized by 9 0

The exact solution nfi_fimizes the potential energy with respect to all functions

a_l_, uyt0 for which the strain energy is finite:

1 /+_/+h/2[ u;,0)2 ]II 2j-_ j-h/2 E, ' 2 2

_f_q dx (2.86)_tyl0
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where the prime on u_il , %10 represents differentiation with respect to x and the

: F ''/2
Ca J-h/2 E6 (Fo') 2dy

= F hI2 E6 dy.
C4 .l-h�2

prime on Fo represents differentiation with respect to y. We denote:

_. F h/2G j-h/2 & (F°)2dy;

._ f+h/2
Ca J-a�2 E6 Fg dy;

(2.87)

(2.88)

Observe that, given the definition of F0 in (2.39), Cx is of the order h3; Ca, Ca and

C4 are of order h. Therefore these constants can be written in the following form:

Cx "- ha Kx, C_ -hi(z, Ca = h K3, C4 - h K4. (2.89)

The first variation of I-I with respect to U_l1 is:

E( ' )_Ii(U_ll ) = h3 K_ u'_ix 6U'_l1 + h .[{2 u_la cSU_lx+ h I(3 uulo _U_la dx

and the corresponding Euler equation is:

(2.90)

!

-- h 3 _(1 tt_tl "_- h,I(2 U_ll + h IQ uul o = O. (2.91)

Similarly, the Euler equation corresponding to the first variation of II with respect

to Uyl0 is:

- h t{_ _0 - h.r(3% =q. (",.92)

If we now apply Fourier traasfot_n to (2.91) and (2.92), the following expressions

are obtained:

(2.93)
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where U_,l(_) (resp. U_10(_) ) is the Fourier transform of U_ll (resp. uyt0 ) and Q(_)

is the Fourier transform of q(x). Solving (2.93) for U_ll and Uyl0:
.f

D(_) Uz[1 _- B(_) Q; D(_) Uy,0 = C(_)Q (2.94)

where:

D(_) = _2 h 2 (I(_ K4 - I_) + _4 h 4 K1 K4 (2.95)

B(¢) = -i _ h I(3 (2.96)

C(_) = h If2 + _2 h 3 K1. (2.97)

On dividing the first of (2.94) by -i _ h I(3 and the second by h I(2 the following

expressions are obtained:

[(,/(4]
[i_h( t(2t(4t(a t(3) +i_3h3 "I_a ] U_=,_ = Q (2.98)

[_2 h (/_ 4 '_'7_ _4 ]Z3 /r_'l /(41 --(1 _2 /(1_- K_) + tc2 ] U_,o- + h_zc_)Q (2.99)

On performing the inverse Fourier transform, we have:

(I(2t(4I(3 rl(3) h u'xll tCl t(4 h31(3u_ll"' = q (2.100)

(IQ/(4 -3, Iv h'4 -- h " - q - h _ (2.101)
S<_'_ _lo - & ) _*_lo-

The sigvaficanceof (2.100) and (2.101) is that the e.xactsolution satisfies these

equations hence these equations characterize the model corresponding to _.

2.4.2 The Model Characterized by ,31

In this case taking the the displacement field given by (2.65) and (2.66), the poten-

tial energy flmctional is determined in the same way as for the 30 case. Taking the
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first variation of FI with respect to each one of the displacement field components

uzll, uzj2, uyl0 and uyl2 , and applying the Fourier transform to the resulting Euler

equations, the following expressions are obtained:

iha_(Kn - 1¢6)

ha( 2 1(12

iha((K1,. - Kr)

h_( 2 IGo + halG

haIfi 42 + h K2 i _ h Ka h3IG _ + h lG

-i(hK3 hi(4( 2 -ih(I(4

h3 I(s 42 + h I(3 i _ h IQ h3 Ks _2 + h I(4

-ih3_(IQ1 - K6) h3( 2 IQ2 -iha_(IQ2 - I(7)

• Um ' _ 0

v_l° I O
U_:I2 o

, U_I2 , Q h2G1
(2.102)

where:

= F h/_
65 -- h 3 t(5 J-h�2 Ely(Fo)dy

= V hI2
C6 = h 3I(6 j-h�2 F-a(Fo)Fl'dy

__ V hI2
C7 = h a IG J-h�2 F_.2y F[dy

-- V hI2
Cs = ha IQ J-h�2 El y2 dy

-- V hI2
C9 = h a [(9 J-h�2 E3 (F[)2dy

= f+h/2
Clo = h5 tgm J-h�2 E6 (Fx) _ dy

= F h/2
Cll - h a 1/11 J-h�2 E6 (Fo') F1 dy

= F hI2
C12 = h 3 t(12 J-h�2 E6 FI dy

F1(h/2)= h2 GI.

(2.103)

(2.1o4)

(2.105)

(2.106)

(2.m7)

(2.1os)

(2.109)

(2.11o)

(2.111)

Solving (2.102) for U_I2 and L_Io:

D(_) U,12 : B(() Q; D(() Uylo = C(_) Q (2.112)

where:

D(_) = _s h n Da + _ h m D2 + _4 h s/93 (2.113)
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i_ hs B1 + i_ 3hT(B2 + B3 G,) + i_ 5hg(B4 + Bs G,) (2.114)

h5 L1 + _2 hT(L2 + L3 G1) + _4hg(L4 + Ls G1) + _ hll(L6 + L_ G1). (2.115)

Assuming that the solution is sufficiently smooth, and letting h _ 0 for _ #: 0 we

can neglect higher order terms in the above expressions:

D(_) = _4 hs/93, B(_) = i _ h s B1, C(_) = h5 L, (2.116)

where:

193 = (A_ - IQ IG) (K2 IQ - I_) (2.117)

B1 = I(9(t(2 IQ - I_) (2.118)

L, = -t_9(I(2 IQ - I_). (2.119)

On substituting into (2.112), and performing the inverse Fourier transform, the

following equations are obtahled:

u ,0= q

and similarlyfor the other two equations:

(h? - ICsI(9)(h3 I(4- h_) hu',,, = q
AK

KslG) h3 ,,- t(7 7G %'_ = q

(2.12o)

(2.121)

where Lk/( = IG(tQ t(n + 1(3 E7 - t(,t IQ - tQ I(,2) + t(9(IQ t(5 - I_3 t(s). Since

q(x) satisfies the equilibrium equations on Izl _ L/2 and q(x) = 0 for I_t > L/2,
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on integrating (2.122) it is cl_r that u_l_ = 0 for Izl > L/2. The same is true for

uyl2 :

FfUyI2 ( X )
(IG - IQ I(9/I(7) h 3 L/2 L/2 q(s)dsdt

1 F= (i(7_iQifg/i(7)h a L/2q(t)(x-t)dt. (2.124)

For the integral identity used in (2.124) see, for example, eq. (10), p. 225 in [7].

In fact, since the strain energy is bounded, all functions u_ti and Uyli (i = 0, 1,...)

have to decay as Ix[ ---, oo, with the exception of u_12 and %10, which contain the

rigid body displacement and rotation terms. Therefore the u_12 and uyl0 are the

dominant functions. Observe that these axe the two functions which appear in the

model characterized by Z °, see equations (2.100), (2.101).

2.4.3 The Model Characterized by _2

When the equilibrium equatioits are satisfied up to the second power of/3, the

displacement field is given by (2.77) and (2.78). Note that FI(y) and F3(y) are

both of order h 2. Tiffs is the first model for which the expressions representing the

mode of deformation (see equations (2.77) and (2.78)) contain the complete set of

coefl:idents up to the second power of h.

functions u_l 2 and u_lo are as follows:

The Euler equations for the dominant

(K20- Ic8)a3_;[_ = q (2.125)

-(&0 - &) h_%0_v= q (2.126)
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and thus, using (2.106);
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1 /+h/2Ic20= V j-h/ E3(G)2@ (2.12r)

I(2o - t(s = -_ J-h�2 \ E3 - E1 dy. (2.128)

The procedure for obtaining these equations is the same as the procedure used

in Sections 2.4.1 and 2.4.2 but the details are omitted here.

2.4.4 Hierarchic Models Characterized by/5 ,0 and/31

On comparing equations (2.120), (2.121) with (2.125), (2.126) it is clear that the

model characterized by _1 does not converge to the same limit as the/32 model

with respect to h ---, 0. The reason for this is that the model characterized by/_1

does not contain the complete set of coefficients in h 2 for the uy expansion. In

order to satisfy the requirement represented by equation (2.85), it is necessary to

substitute I(2o for I_/I(9 in (2.120) and (2.121). Thus, through the simple device of

modifying coefficients which represent material properties, tile tfierarchic sequence

of models is extended "dowmvard": Solving for only four m_mown functions of a

single variable (i.e., U_ll(X ), u_12(x ), %10(x), uyl2(x)) the same limiting solution is

obtained with respect to the h _ 0 as if the problem of dasticity had been solved.

On comparing equations (2.100) and (2.101) with (2.125) and (2.126), it is seen

that, for the model characterized by _ to converge to the sa.me limit as the model
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value _76, defined as:

I(4 h_ -0, I(1 K4 =-(I(20-/(8). (2.130)
1(2 I(2

The condition I(2 I(.4/Ka - I(a = 0 (which is the same as the first of (2.130)) is

satisfied if E6 (y) is replaced by a constant value. From the point of view of the

limiting solution with respect to h ---+ 0 it is immaterial which constant value is

used since the essential coefficient, (t(2o - I(.s), is independent of E6, (see equa-

tion (2.128)). For finite values of h, on the other hand, it is important to use some

"reasonable" replacement for E6. For example, we may replace E6 by its average

_776 def 2 fo+h/2= _ E6 dy. (2.131)

Another possibility is to select tile replacement for E6(y) such that the function

F0(y) defined by (2.39) ,viii be unchanged at y = h/2:

hi2 1 hFo(h/2) = E_y) dy = (2.132)2£

and thus we may replace E6(y) by the harmonic average, denoted by E6:

= E6(y) dy (2.133)

The harmonic average is less than or equal to the average. Therefore, using _76

instead of E6 has the effect that the shear stiffness is generally smaller, which is

(._fiLc4 ) K,K4=-(K=o- Ks) (2.129)K3 K3=0,
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analogous to introducing a shear correction factor, less than or equal to unity, in

the Reissner-Mindlin model for isotropic plates.

Observe that when E6(y) is replaced by a constant value, which is one of the

requirements for the model to be a member of the hierarchy, then F0(y) and y are

not linearly independent, and we can write F0 = y instead of (2.39), hence from

(2.87) to (2.89):

//1 K4 /(1 K4 1 /+hi2
t(2 - ?_ - V j-h/2 E, y2 dy (2.134)

and therefore conditions (2.129) and (2.130) are satisfied when the material constant

E_ is replaced by (E_ - E]/E3) for each lamina. That is, the correct limiting case

can be obtained for the simplest model, i.e., the model corresponding to 3 _, through

modification of the material properties.

That these modifications provide the correct limiting case for laminated strips

is demonstrated by numerical examples in next Chapter.
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Chapter 3

Solution of the Strip Model

This Chapter is devoted to the numerical verification of the models developed

in Chapter 2 for the laminated strip. First, a description of the finite element

implementation is discussed. The dimensional reduction accomplished by proper

selection of the transverse functions made it possible to uncouple the x and y

parts of the fields. Therefore the numerical solution requires only to solve a one-

dimensional problem. Second, examples are presented in which the ability of the

hierarchic sequence of models is demonstrated.

3.1 The Numerical Problem

In this Section the numerical problem for the computation of functions u,i 1(x),

u_12(x),... , Uyl0(X), uyt2(x),.., for the hierarchic sequence of models is formulated.

The formulation is based on the p-version of the finite element method. Consider
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the strain energy per unit width associated with the kth element of the laminate

of length gk.

,Iv \n=l JY'_

where m is the number of layers in the kth element.

(3.1)

where a} 0 and b}i}

p+l

u_I,= _ a}i) Ni(_) (3.2)
1=1

p-41

= (3.3)
.1--1

are constants, p is the polynomial degree of the x-direction

expansion, and Nj(_) are basis functions for the (p + 1)-dimensional space S _.

By definition, 5 _ is the space of polynomials of degree p on the standard dement

f2,t de_ {_ I - 1 _< _ _< +1}. Specifically, the following basis functions are used for

Sp:

2 '
1+_ N, (() -- ¢,-1(_) , i=3, 4, .. p+ 1

2 _

(3.4)

where ¢i(_) is defined in terms of the Legendre polynomials P2-I

8j(_) = _21___ P;-_(t)dt,
j = 2, 3,... (3.5)

For details we refer to [1]. The kth element is mapped onto the standard element

by the transformation:

X ---" 1 - 4 xk + 1 + _ (3.6)
2 _ zk+,

functions as follows:

The functions u_l, and u_l, in (2.77), (2.78) are written in terms of the basis
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from which:

dx -" Xk+l -- Xk2 d_ = --d_ (3.7)

where gk def-" Xk+l --xk. Using equations (2.7) and (3.2), (3.3) and the condition that

the equilibrium equations are satisfied up to the second power of 13, we have:

[{a (1)}

_u = o o _'l.mJ o Fz'l_NJ

n'=_, L LNJ _[N'J FdLNJ _F_LN'J _'LN.I _LN'J

{b(1)}

{aO)}I

(bo)}[
{a (3) }

• {b (3) }

(3.8)

or, in short hand;

{e} = [Q]{a}. (3.9)

The strain energy for the nth lamina of the kth element is:

U.,_-_ [aJ ([Q])T[E]("k)[Q]dydx {a}
Jyn

(3.10)

or, in matrix form:

1
U,, = _ [a] [A] ('lk){a} (3,11)

where [El (n4k) is the material stiffness matrix for lamina n of the ]cth element, and

is given by:

(3.12)
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and [t_1("lk) is the stiffnessmatrix for lamina n given by:

sym.

/(13 &4 Iq5 Iq6

I(2a K24 I(25 t(26

I(3a K_ tfas I(3_

K44 K4s K46

t(ss I(56

1(66

[Iq(nlk) =

The first submatrix of (3.13) is computed as follows:

(3.13)

[&,] _llnlk)_Fl f"+l {2y_2{N'}[N'Jdyd_jy.\-_k)

Jy,, _-k {N'} [NJ dyd_

G

_j_xl/'u,,+l 2yJr, _7 {N}LN'jdyd_

-j_l' jy._"+'{N} LNJ dyd_ (3.14)

Evaluating the integrals in the y-direction, and defining:

,, = N :v,d_,

(3.15)

(3.16)

(3.17)

we can write [t(u] in the following way:

1

1 E?lk)Ghn [Ms,]. (3.18)+_
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The other submatrices in (3.13) are defined similarly (see Appendix C). The

size of each submatrix is (iv + 1) (p + 1). The number of subrnatrices depends on

the number of terms in the expansion of the displacement field. For example, for

3 a there are 21 independent submatrices. Finally, the stiffness matrix of the kth

element of the laminate is the sum of the stiffness matrices of each lamina in that

element. Thus:

m

k=l, 2,..., M (3.19)
n=l

where M is the number of elements in the mesh.

element can be written in matrix form as:

1

5/k(ff) = _Laj [t_(k){a} (3.20)

where LaJ is the vector of the unknown coefficients of u_li, uyli.

Writing the displacement components in the form (2.79), (2.80) and orthogonal-

izing the functions which represents the transverse variation of the displacement

components, as in (2.81), serves to reduce the condition number of the stiffiaess

matrices.

The potential energy functional II(u-") is defined as follo,_s:

The strain energy of the k'th

n(¢) 7(3 (3.21)

where LC(ff) = EM=I Uk(ff) is the strain energy of the laminate, _'(ff) is the potential

of the e.xtemal loads, and ff are the displacement functions e.x'pressed in temls of the

unknown coefficients ai, bj, as indicated ha (3.2) and (3.3). The functions u,li , uul,
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as:

where T_ and Ty are the tractions applied to the outer surfaces of the laminate in

the x- and y-directions respectively. Considering the case of antisyrnmetric loading,

T_ = 0, and using the mapping (3.6), we can write:

/:7(_ = r_ _,,dz (3.24)

2,
_, q_(¢) e_, q_(_)_(_,_himat. (3.25)

Using the expansion (2.77), (2.78) and the mapping (3.6), the potential of the

external forces can be written in matrix form as follows:

$'(ff) = Laj {R} (3.26)

where {R} is the load vector (see Appendix D for details). Substituting (3.20) and

(3.26) into (3.21):

1
g(ff) - 5 La] [hi {a} - LaJ {R} (3.27)

and, after applying the conchtions (3.22), we get:

[hi {a} - {n} = 0 (3.28)

which is the system of simultaneous linear equations from which the coefficients of

the unknown functions U_li and uyii are computed.

m(_) = f (T_ u, + Ty uu)dx (3.23)

which minimize the potential energy of the system are found by setting

on(_
0aj = 0. (3.22)

The potential of the external loads per unit width of the laminate can be written
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Two representative model problems are discussed in the following. For the first

modal problem the solution is smooth. For the second model problem stress singu-

larities occur at the boundaries.

3.2.1 Model Problem 1: The Infinite Strip

Consider an infinite strip composed of perfectly bonded orthotropic layers, sym-

metrically distributed with respect to the middle plane, i.e. the x-axis (Fig. 3.1).

Two cases will be discussed in the following, in one case the number of layers is 3

in the other the number of layers is 5.

h

Y

Figure 3.1: Model problem 1: Notation for the case of three layers.
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The body is assumed to be in state of plane strain with respect to the xy

plane. Antisymmetry conditions are imposed at x -- 0 mad symmetry conditions

are imposed at x = g/2. These boundary conditions are equivalent to a simply

supported finite strip of length g, which is symmetrically loaded (with respect to

x) about x = g/2. Uniform load is applied as a normal traction to the top and

bottom surfaces of the strip. All layers in the laminate are of equal thickness t,

and are of a square symmetric unidirectional fibrous composite material possessing

the following stiffness properties, which simulate a high-modulns graphite/epoxy

composite:

EL = 25.0 x 106 psi Fir = 1.0 x 106 psi

GLT -- 0.5 X 10 6 psi GT-r = 0.2 x 10 6 psi

lILT "- t2y"F "-- 0.25

where L indicates the direction parallel to the fibers, T is the transverse direction,

and YLT is the Poisson ratio (i.e., ULT = --eT"r/eLL, where eT-r, eLL are, respectively,

the normal strains in the directions T and L). These material properties were

selected from reference [18].

For the three-layer laminate the L-direction coincides with the x-direction in

the two outer layers, while the T is parallel to the x-direction in the central laver.

For the five-layer laminate the L-direction coincides with the x-direction in the

central and in the two outer layers, while the T is parallel to the x-direction in the

other two layers. Tlfis arrangement of laminae is designated as 0/90/0/90/0.



67

The functions of main interest for this problemare the longitudinal and trans-

versestresses(a_ and ay) at x =/?/2, the shear stress r_y at x = 0, the deflection

uy at x = 6/2, arid the horizontal displacement u_ at x = 0.

In order to establish a reference solution which can be regarded as being suf-

ficiently close to the exact solution of the problem of elasticity, the problem was

solved using the finite dement program MSC/PROBE 1 and an experimental pro-

gram in which the algorithm described in Chapter 2 is implemented. In the ref-

erence solution obtained with MSC/PROBE each layer was discretized as a two-

dimensional plane strain element with orthotropic material properties. Three or

five finite dements were used and the solution was obtained for p ranging from 1

through 8. For all L/h ratios the estimated relative error in energy norm was below

1% at p = 8. The solution corresponding to p = 8 will be used as tile basis for

comparison. The solutions corresponding to the proposed hierarchic models were

obtained using only one laminated element. The polynomial degree was varied from

1 through 8 and the equilibrium equations were satisfied up to powers of 3 ranging

from 0 to 3.

The model that satisfies the equilibrium equations up to the zeroth power of/3

was modified as indicated in Section 2.4.4. The transverse shear modulus of each

1MSC/PROBE: User's Manual, The MacNeal-Schwendler Corporation, 1600 S. Brentwood

Blvd., Suite 840, St. Louis, Missouri 63144.
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layer was made equal to the harmonic average E6. In the case of three layers:

.E6 = 3 1 + (3.29)

and E1 for each layer was substituted for by (Z, - E22/E3). We will denote the

modified model characterized by/7° with rio, to differentiate from those cases where

the unmodified/3 ° results are presented.

The model characterized by fll was also modified according to the description

in Section 2.4.4, and will be denoted as ,31 since no results are presented for the

unmodified case.

The following normalized quantities are defined to present the results:

de< def _ det" r._(O,y) (3.30)-- , -- , Tzy -"
q q q

da ETu,(O,y) (3.31)_z "--
qt

Uy de_ lOO ET h3 uy(g/2, 0) (3.32)
qg4

where q is the applied traction and t is the ttfickness of each lmnina.

The non-dimensional vertical deflection Uy of the beam is plotted against the

L/h ratio in Fig. 3.2 for the three,-layer laminate, and in Fig. 3.3 for the five-layer

laminate.

It is seen that for large L/h ratios all models yield similar results. ,_ L/h

decreases, the ri model underestimates the deflection while the 31 model is very

close to the e,_act solution. For iT and 3 3 the results are virtually identical with

those of MSC/PROBE for the entire range of L/h values. The ratio between
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(El - E_/E3) and E1 is only 0.99 for the top and bottom layers and 0.94 for the

central layer, so that the influence of the modification of the material properties in

the values of the deflection is almost negligible for all L/h ratios. To emphasize the

influence of the material properties in the results for the 3° model, Fig. 3.4 shows

the central deflection of the three-layer laminate for different material properties,

selected such that the ratio (El - E22/E3)/E, = 0.7 for the outer layers, while £76

was made constant and equal to the harmonic average (see equation (3.29)). It is

seen that the solution corresponding to the/3 ° model converges to a different limit

than the other models as L/h --.-, oo when the adjustment of the material properties

is not performed. Finally, Fig. 3.5 indicates that if E6 is not modified at all, the

model converges to zero as L/h --., O.

The results shown in Fig. 3.6 indicate that for large L/h, the solution of _,,,,

which is equivalent to the first-order shear-deformation model, gives a good repre-

sentation of the actual displacement variation. As L/h becomes smaller, the effect

of transverse shear becomes increasingly important and the linear approximation

shows a significant deviation from the reference solution. Tile/_1 solution gives

much better results, even for very small L/A ratios.

ment is even greater, especially for small L/h ratios.

For if2 and ,33 the improve-

See Figures 3.7 and 3.8 for

the three-layer laminate and Fig. 3.9 for the five-layer problem.

The sane situation is true for the longitudinal stress _r_, as shown in Figures 3.10

and 3.11 for the three layer problem and in Fig. 3.12 for the five-layer lamhlate.
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Tile shear stressdistribution was obtained directly from the solution vector

using equation (2.6), and also by integrating the equilibrium equation (2.2) and

imposing the stress free condition at the top and bottom surfaces. The direct

calculation givesgoodresultsonly for high powersof/3, regardlessof the L/h ratio

(see Figures 3.13, 3.14 and 3.15), while integration of the equilibrium equations

yields very close approximation for low powers of/3 when L/h is large and for high

powers of/3 when n/h is small (see figures 3.16 and 3.17). Appendix E includes

a detailed description for the calculation of engineering quantities from the finite

element solution.

Finally, Fig. 3.18 shows the non-dimensional transverse stress distribution c7_

for L/h = 4 that was computed from the solution vector using equation (2.6).

It is seen that the solution for/32 and/33 give accurate results, especially at the

interface between layers. The original material properties were used in computing

the stresses for the cases/3o and/31 .
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Uy
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Figure 3.2: Model problem 1: Central deflection for the three-layer laminate.
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[] Beta 1
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Ii
" -- MSC/PROBE
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_il I 1 L i LIJL L
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Uh Ratio

L
0 I ! _ i I _ t _

1.0E +00 1.0E +03

Figure 3.3: Model problem 1: Central deflection for the five-layer laminate.
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Beta 0 --x-- Beta 1 -e-- Beta 2 _ Beta 3
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Figure 3.4: Model problem 1: Central deflection for the three-layer laminate. For

the outer layers: (El - E_2//£3) / E, = 0.7.
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Figure 3.7: Model problem 1: The function i_(0, y) for L/h = 10. Three-layer

laminate.
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Figure 3.9: Model problem 1: The function _:(O,y) for L/h = 4. Five-layer

laminate.
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Figure 3.10: Model problem 1: The function c7,(g/2, y) for L/h = 10. Three-layer
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Figure 3.11: Model problem 1: The function #r_(g/2, y) for L/h = 4. Three-layer

laminate.
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Figure 3.16: Model problem 1: The function _xy(O, y) computed by integration of
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3.2.2 Model problem 2: The Cantilever Beam

The laminated strip of the previous example is considered again but with different

boundary conditions. At x = 0, both the horizontal and vertical displacements

are set to zero (damped edge), while the end x = _ is free (Fig. 3.19). At x = 0

singularities occur at the top and bottom surfaces, and boundary layer effects are

dominant near the clamped edge. At x = _?singularities occur at the interfaces. Of

interest is the performance of the hierarchic model near the damped edge and at

the flee edge.

The reference solution for this problem was again obtained using MSC/PROBE.

The finite element mesh, shown in Fig. 3.20, consisted of 30 elements. The mesh

was graded in geometric progression towards the singular points. At p = 8 the

estimated relative error in energy norm was less than 0.5%. At p = 8 the total

number of degrees of freedom is 1,783. Changing the location of the clamped edge,

the same mesh was used to evaluate the singularities at the flee edge.

The solution with the hierarchic model was obtained using only one element for

the polynomial degree varying from 1 to 8, and the power of fl from 0 to 3.

Fig. 3.21 shows the end deflection of the beam as a function of the degrees of

freedom for L/h = 10. The solution for ,d0m differs by 9.7% from the solution by

MSC/PROBE, but for fll the difference is only 1.22%.

Normal and shear stress distributions were computed at different locations along

the beam. At x = 0 the exact values of _r_ and v_y are infinity at the top and
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Figure 3.20: Model problem 2: Finite element mesh for the reference solution.
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bottom surfaces.Thereareno singularitiesat the laminar interfaces.The solutions

obtained by meansof the proposedhierarchic modelsexhibited good convergence

characteristics in terms of the normal and shear stresses at this Section, with the

exception of the neighborhoods of the stress singularities at x/h = 0, y/t = +1.5.

The results are shown in Figures 3.22 and 3.23.

At x = hi3, i.e., at only one lamina thickness away from the singularity, the

normal stress distribution is in excellent agreement with that of MSC/PROBE for

all powers of/3 larger than zero (see Fig. 3.24).

The shear stress distribution requires higher powers of/3 to approach the ref-

erence solution. At x = hi6 (half the thickness of one layer) the solution corre-

sponding to/33 gives accurate results for both methods (direct computation and

integration of the equilibrium equations) as shown in Figures 3.25 and 3.26.

At x - h the shear stress computed directly from the solution vector is accurate

only when the equilibrium equations are satisfied up to the third power of/3. W_aen

they are computed through integration of the equilibrium equations, the results are

accurate for all powers of/3 equal or greater than one (see Figures 3.27 and 3.28).

.At the free end (x = 5), large stress gradients occur at the laminar interfaces.

Figure 3.29 shows the normal stress ay at x = 5, wtfile Figure 3.30 show the stress

distribution at a very short distance from the free edge (x = 0.997 _). Note that the

performance of the hierarchic sequence very close to the free end is very satisfactory.
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3.3 Conclusions

• The derivation of a hierarchic sequence of models for laminated strips was

outlined and their performance was demonstrated on the basis of the degree

to which the equilibrium equations are satisfied. The powers of the parameter

/3, representing the degree to which the equilibrium equations are satisfied,

have been used to identify members of the hierarchic sequence.

• The proper choice of a model from the hierarchic sequence for a particular

application is problem dependent, that is, depends on the exact solution of

the corresponding three-dimensional problem, the goals of computation, the

degree of precision required, and the method by which the data of interest

are computed. In general, the solution of the problem of elasticity in the

smooth interior regions is very close to the solution corresponding to the

lowest member of the hierarchy, whereas the solution near the boundaries is

more complicated and thus requires the use of higher models.

• In the interest of computational efficiency, the hierarchic sequence of mod-

els has been extended downward to include tile models characterized by/3 0

and/31. Tiffs requires a modification of material properties, which is analo-

gous to the generally accepted modification of material properties used in the

Reissner-Mindlin model for homogeneous isotropic plates. In fact, the model

characterized by 30 is the Reissner-Mindlin model, generalized for laminated

composites, when the modified material properties are used. In the special
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case, when the shear modulus is independent of y, the hierarchic model is the

Reissner-Mindlin model. The shear correction factor can be assigned arbitrar-

ily since the requirements set for hierarchic models are satisfied independently

of the shear correction factor.

• The hierarchic framework described in Chapter 2 for laminated strips, and

illustrated by examples in this Chapter, allows the development of reliable

predictive capabilities for the structural and strength responses of structural

components made of laminated composites. The more general case of lami-

nated plates is addressed in the two following chapters.
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Chapter 4

Laminated Plates

This Chapter describes the formulation of hierarchic models for laminated plates.

As in the case of the laminated strip, this formulation is based on one parameter

(/3) which characterizes the hierarchic sequence of models, and a set of constants

whose influence have been assessed by a numerical sensitivity study. This approach

has been adopted in order to limit the rate of increase of fields such that the number

of fields added per model is always three.

The analysis is restricted to mid-plane symmetric laminated plates, i.e., when

there is a lamina above the geometrical mid-plane at the same distance from the

mid-plane and having identical orientation and properties for each lamina below

the mid-plane. For such a symmetrical stacking sequence there is no coupling

between membrane and bending terms. However, the normal stress-twist curvature

coupling terms increase the complexity of the analysis by a significant measure when

compared with the laminated strip evaluated in the previous chapters.
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Numerical examplesanalyzedwith the proposedsequenceof modelsshowgood

correlation with the referencesolutions. Resultswereobtainedfor squareand rect-

angular plates with uniform loading and with homogeneousboundary conditions.

Cross-ply and angle-ply laminates were evaluated and the results compared with

those of MSC/PROBE.

4.1 Models for Laminated Plates

Consider an infinite flat plate of constant thickness h composed of thin layers of

orthotropic elastic material perfectly bonded together. Each layer (lamina) pos-

sesses a plane of elastic symmetry parallel to the x - y plane. The laminae are

symmetrically arranged with respect to the middle surface of the plate (i.e., the

x - y plane). The load q(x, y) is antisymmetric with respect to the middle plane,

and q(x, y) = 0 for lxl >__a, [y[ >_ b, with a and b some fixed numbers. Let c_ = 1/a

and 7 = 1/b, and further let:

= mm( ,7) (4.1)

Based on the arguments outlined in Section 2.1, we write the displacement field

in the following form:

bf_(x,y,z) = ¢(fl, z)e iz(m_+y) (4.2)

Uy(X,y,z) = _(fl, z)e iz('r=+y) (4.3)

l.t_(x, y,z) = p(fl, z) e i_(m_+y) (4.4)



92

where5¢_,/./y,/4z,arecomplexfunctions,and both the real andimaginary parts rep-

resentadmissibledisplazements,and ¢, _, p are the partial Fourier transformations

of the displacement components u_, uy, u,:

¢(9,z) = ¢_(Z,z)+iCdg, z) (4.5)

_(9,z) = ¢o(9,z)+ieb(9,z) (4.6)

p(9,z) = po(Z,z)+ipb(Z,z) (4.7)

where ¢_, Cb, _b_, _b are antisymmetric real functions, and p_ and Pb are symmetric

real functions with respect to the middle surface of the plate (laminate). The

parameter m is included to asses the influence of the x- and y-directions in the

solution corresponding to the transverse (or z) direction.

The strain components in the transformed variables corresponding to the dis-

placement field given by (4.2), (4.3) and (4.4) are:

O_T

i_ = O--T =

Ot/v
_y = _ =

C_z
_.=O--T=

Ot1,
% = 0--7+

dg¢,
_, = o--;-+m

OUy
_/_,, = Oz +_

i/3 m ¢ e iZ(m_+u)

i/3 _ eiZ(m_+y)

fll ei _(mz+y)

Otlz
cgx = (¢' + i/3mp) e iz(m_c+y)

Oy = (_' + i _p)e iz(''_+y)

(4.8)

(4.9)

(4.1o)

(4.11)

(4.12)

(4.13)

where the primes represent differentiation with respect to z.
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Let Y_, _ be the material (lamina) coordinates for any layer rotated an angle O

with respect to the global (laminate) coordinate system (x, y, z) about the z-axis.

The stresses and strains in the rotated system can be written in terms of the global

quantities as:

{9} = [TJ {a}, {_} = [_ {e} (4.14)

and the stress-strain relations for each lamina in the local system are:

{9} -- [C] {g} (4.15)

where [C] is the lamina material stiffness matrix in the lamina coordinate system

(2, _, z) which contains only nine nonzero terms because there are three mutually

perpendicular planes of elastic symmetry:

[C]=
sym.

C13

C2z

C33

0 0 0

0 0 0

0 0 0

C44 0 0

C55 0

C66

(4.16)



and [2rJis the transformation matrix:

Tyt 2 Tt 2

n2 m 2
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[71=
0 0

0 0

0 0

-ran mn

0 0 0 2mn

0 0 0 -2mn

1 0 0 0

0 m -n 0

0 n m 0

0 0 0 m 2 - n 2

(4.17)

where m = cos 0, n = sin0. Combining (4.14) and (4.15) the stress-strain relations

in the laminate coordinate system for any layer can be written as:

to}= [C][T] (4.18)

Defining

[Q] = [_-' [C] [_ (4.19)

as the transformed lamina material matrix, equation (4.18) can be written as:

O'x

(Yy

"J'_ Z

_z

, 7"xy

Qll

sym.

Q13 o o Q16

Q23 o o Q26

Q33 o o Q36

Q44 Q_ o

Q_ o

Ey

ffz

")'_y .

(4.20)

Note that [Q] has thirteen stiffness constants in the global system because there is

only one plane of elastic synmletry (the one perpendicular to the z-axis).
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The equilibrium equations with zero body force components are given by:

0_ _ Orz_"-_-x + + "_-z =0 (4.21)

Oy + _ = 0 (4.22)

or= ory, o_z
0-"_" + "_y + _ = 0. (4.23)

Substituting equations (4.8) to (4.13) and (4.20) into (4.21) to (4.23) the fol-

lowing Fourier transformed form of the equilibrium equations are obtained:

{__[(._2Q,, + 2_ Q,6+ Q6_)¢+ (m2Q,6+ m(Q,_+ Q_) + Q_)¢]+

i/3[(mQ13 + Q36)p' + (Q4, p)' + (mQ55 p)'] +

(Q45 g" + Q55 ¢')'}e iz('=+y) = 0 (4.24)

{-/_[(m 2Qt6+ m(Q_2+ Q66)+ Q26)¢ + (Q:2+ 2mQ26+ m2Q66)_b]+

i 9[(Q_ + _Q_) _' + (Q_ p)' + (_Q4_p)']+

(Q44¢' + Q45¢')'}e'z('_+y)= 0 (4.25)

{-/32[(Q44+ 2mQ45+ m2Qss)p]+

Z[(Q. +-_ Q4_)V'+ (Q4_+-_ Q_)¢' + ((mQ,_+ Q_)_)' +

((Q23+mQ36)¢)']+(Q33p')'}e 'z(_+y) =0. (4.25)

_b(/3,z)and p(/3,z) into a powerserieswith respect to/3:Expanding¢(Z,¢),

0(/3, z) = [¢ao(z) + iCbo(z)] +_[q_al(z) + iObl(Z)] + ¢fl [O_2(Z) + i4)b2(Z)] +''" (4.27)

_b(Z,z) = [_bao(Z) + i _bbo(z)] +/3[_b,l(z) + ilbbl(z)] +/32 [_ba2(z) + i%_.(z)] +... (4.28)

P(Z, z) = [pao(z) + ipbo(Z)] +/3[pal(Z) + ip_l(Z)] +/3 ")"[pa2(Z) + ipb2(Z)] +"" (4.29)



On substituting (4.27), (4.28), (4.29) into the equilibrium equations

(4.25), (4.26) and separating into real and imaginary parts we have:

The real part of (4.24):
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(4.24),

(Q4_'o + Q_¢'o)' + /3[(Q45_b_1+Q55¢_'_)'- (mQ13+ Qa_)p_o-

((Q4_+ m Q_)p_o)']+

+ /Z_{2[(Q4s_ba_2+Qss¢_'2)'- (mQi3+Q3_)PbI-

((Q45+ mQ55)pbl)'-(m 2 Ql1+ 2mQ16+ Q66)0.o-

(._ Q_ + m(Ql_+Q_) + Q:_)_oo]+... = o (4.30)

The real part of (4.25):

(Q44_'o+ Q,_¢'o)' +

+

t i rrt i _/3[(Q44_a_l -I-Q45¢al) - (Q23 + Qa6)Pbo

((Q. + m Q,_)p_o)']+

9_[(Q.O'_+ Q_¢'_)' - (Q:_+ ,_Q_)p_,-

((Q44 + mQ45)pb1)'- (m 2 Q16 + m(Qi2 + Q_6) -+-

Q:6)¢.o - (Q22 + 2mQ:6 + m _ Q66)g)_o] -I-. • • = 0

(4.31)

The real part of (4.26):

(Q3Jo)' rn !+ _[(Q33p_1)'- (Q44 + Q45)_0 - (Q45 + mQz5)¢[o -

((mQ13 + Q36)¢bO)' - ((Q23 "Jr" 17_ Q36)2/2bO) t] Jr-

+ Z:[(Q_J:)' - (Qaa+,,_Q,_)_;, - (Q,_+ ,,_Q_)¢g,-



(Q,,+ 2_Q,_+ _ Q_)p,o]+...=o.
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(4.32)

The imaginm'y part of (4.24):

(Q4__;o+ Q__o)' + _[(Q4_, + Qs_,)' +(-_Q,3 +Q3_)p'o+

((Q4_+ mQ_5)p°o)']+

+ 9_[(Q,W_+ Q_¢_)' +(mQ,_ +Q_)p', +

((Q45+mQss)pal)'- (m2Ql1+ 2mQ16+ Q66)(_bo--

(-_ Q,_+,_(Q_ +Q_) +Q_)_o] +... =o (4.33)

The imaginary part of (4.25):

(Q._/o +Q,_o)' +

+

9[(Q._;, + Q,_,g,)'+ (Q_ +._ Q_)p'o +

((Q44+ mQ4s)p_o)']+

;3:[(Q._t_+ Q,_¢i:)'+ (Q:_+ _Q_)p', +

((Q. + mQ_)po,)' - (_ Q,_+ _(Q,_ + Q_)

+Q:_)Cbo- (Q_:+ 2,_ Q:_+ ,_ Q_)_o] +... =o

(4.34)

The imagii_'y part of (4.26):

(Q3_p_o)'+ Z[(Q_p;,)'+ (Q. + mQ_)_:o + (Q,5+ ,_Q_)¢'o +

((rnQ13+ Q36)Oao)'+ ((Q23+ m Q36)yzao)']--t-
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+ Z2[(Q33pI_)' + (Q. +._Q4_)_'1 + (Q45+ _Q5.)¢'1 +

(Q44 + 2 mQ45 + m 2 Qss)Pbo] +'-" = 0. (4.35)

These equations hold for any choice of/3. Solving for each power of/3 we obtain

the transverse shape functions as described in the following Sections.

4.1.1 The Model Characterized by

Setting/3 = 0 in equations (4.30) to (4.35) we have for the real parts of the equi-

librium equations:

(Q4_'0 +QsJ0)' = 0 (4.36)

(Q44V_'0 +Q4s¢_'o)' = 0 (4.37)

(Q33p_'0)'= o. (4.3s)

Knowing thatThe solution of the above system requires six arbitrary constants.

¢_0(z), ¢_o(z) are antisymmetric and p_o(Z) is symmetric, the number of arbitrary

constants reduces to three. Integrating, we have:

l /0Q44 dz - bo @5 dz
¢_o(z) = ao Q44Qss - Q£ Q,_Qs5 - Qh

z Q_s dz - ao fo z Q4s_,o(z) = bo Q44Q55- Q24s Q44Qs5- Q245

poo(z) =

which can be written as:

(4.39)

dz (4.40)

(4.41)

¢_o(z) = ao FA(Z) + bo t(A(Z) (4.42)



_o(Z) = boGA(Z)+ aoI(A(Z)

poo(Z) = co.
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(4.43)

(4.44)

Similarly, solving the imaginary part of the equilibrium equations, we get:

¢o0(z)= doFA(z)+eoKA(z)

_oo(z) = eoaA(z)+doK_(z)

poo(z)= L

(4.45)

(4.46)

(4.47)

where

fo x Q44 dzeA(z) = Q.Q55 - Q_5

_ Q55 dzG_(z) = Q.Qss - Q£
Q45

f]o_ Q.Q55 - Q£I(A(z) dz.

(4.48)

(4.49)

(4.50)

The real and imaginary parts are not linearly independent, hence both lead to

the same functional form. The mode of deformation corresponding to fl = 0 can

therefore be written in the following form:

u_(x,y,z) = iz,(x,y) FA(Z)+ _2:(x,y)Kd(z) (4.51)

Uy(X,y,z) -" _t3(x,y)GA(z) + ?_4(x,y)t(A(Z) (4.52)

uz(x,y,z) ----/ts(x,y). (4.53)

This mode of deformation contains five fields,/t,(x, y), _i2(x, y),..., _;5(x, y), which

are all real. To reduce the number of fields we impose additional constraints to



reflect the correlation existing between the hltegration constmlts ao, bo or do,

(4.42), (4.43)and (4.45), (4.46). That is:

I00

eo in

1_2(X, y)= n1_l(X,y), li3(X, y) "_ n_4(X, y) (4.54)

where n is an arbitrary constant.

written in the following way:

The displacement field (4.51)-(4.53), can be now

_,(x,y,z)

udx, y,z)

_z(x,y,z)

= iq(x,y)[Fm(z)+nI(A(z)] (4.55)

= i_4(x,y)[nGA(Z)+t(d(Z)] (4.56)

= as(x,y) (4.57)

which can be rewritten as:

u,(x,y,z) = u,(x,y) Fo(z,n) (4.58)

uy(x,y,z) = u2(x,y)Go(z,n) (4.59)

_z(_,y,z) = _3(_,y) (4.60)

where

yo(z,_)

ao(z,,_)

= FA(z)+nKA(z)=/ozr Q_-nQ4s dz (4.61)Q.Qs_- Q}_

= riGA(z)+ KA(z) = F nQss - Q45 dz. (4.62)
Q44Q,s - Q_do

Note that this model does not depend on the value of the constant m; only depends

on the constant n. The influence of these mid other constants in the solution of

laminated plates is addressed in the next Section.
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When Q44, Q4s, Q55 are constant through the thickness, this model is capable of

representing rigid body displacement and rotation. A similar situation was realized

for the _ laminated strip model in Section 2.I. 1. Unless the material properties are

modified as discussed later, this model does not satisfies the condition of converging

to the same limit as the problem of elasticity as h _ 0.

4.1.2 The Model Characterized by _l

To find the mode of deformation for the model which satisfies the equilibrium

equations up to the first power of/3, we differentiate (4.30) to (4.35) with respect

to/3 and let fl = 0. In this case we have for the real parts:

(Q45_1+Q55¢a_l)'- (mQ13+Q36)p[o- ((Q45+ ll_q55)pbo)t =0 (4.63)

(q--_'l + Q45"1)'- (q23+'_q36)P[0- ((q-- + _Q4_);b0)'= 0 (4.64)

(q,_P',)' - (q- +'_ Q,_)_0 - (Q_ +'_ q_)*_0-

((mQ_3+Q36)¢bo)'-((Q_3+mQ36)_)' =0. (4.65)

Upon integration, we have:

¢_1(z) --- a, FA(Z) +b_ I(A(Z) + mz (4.66)

_b_x(Z) -- bl GA(Z) +al I(A(Z) + z (4.67)

p_(z) = c, +doHA(z,m) +eoHB(z,m). (4.68)



102

Similarly, solving the hnnginary part of the equilibrium equations, we get:

Cbl(Z) "-- dl FA(Z)+el I(A(Z)- 732z (4.69)

_2bl(Z)"-- el GA(Z)+dl KA(z)- z (4.70)

Pbl(z) = --f l --aoHA(Z,m) --boHB(z, rn) (4.71)

where FA(Z), GA(Z), KA(Z) are defined in (4.48), (4.49), (4.50) and Hd(z,m),

HB(z,m) are given by:

[z ?T_Z "b (77_ Q13 + Q36) FA(Z) "_ (Q23 --_ 77_Q36) [CA(Z) dzHA(z, 7n) (4.72)
j0 Q33

[z z q- (mQ,3 q-Qa6) t(A(Z) -b (Q23 -b rnQ36) GA(Z) dz.HB(z,m) (4.73)
Jo Q33

The mode of deformation corresponding to the 31 model can be written in the

following form:

u.(z,y,z)

uy(z, y, z)

_z(z,y,z)

-- fq(X,y) FA(Z)+52(x,y)t_A(Z)+h3(x,y)z (4.74)

= _,(x,y) GA(z)+iL,(x,y)KA(Z)+_6(x,y)z (4.75)

= itT(x,y)+its(x,y)HA(Z,m)+itg(x,y)Hs(z,m). (4.76)

This mode of deformation now contains nine fields, ul (x, y), u2(x, y),..., z_9(x, y).

Again, to reduce the number of fields we impose additional constraints as in the

case of the/3 o model:

_2 (X, y) -- '/2 '/_1 (X, y), _4 (X, y) -" 'rt _5 (X, y), _9 (X, y)--" .5" tt8 (.Z', y)(4.77)
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where n, s are arbitrm'y constants. The displacement field (4.74)-(4.76), can now

be written in the following way:

_x(x,y,z)

u_(x,y,z)

uz(x,y,z)

= _,,(z,y)[FA(z)+ngA(z)]+_,,(x,y)z (4.78)

= _s(x,y)[nGA(Z)+I(A(Z)]+i_s(x,y)z (4.79)

-- _7(x,y)+_s(x,y)[HA(z,m)+sHB(z,m)] (4.80)

which can be rewritten as:

u,(x,y,z) = u,(x,y)Fo(z,n)+u4(x,y)z (4.81)

uy(x,y,z) = u2(x,y)Go(z,n) +us(x,y)z (4.82)

uz(x,y,z) = u3(x,y) +u6(x,y) Ho(z,m,s) (4.83)

where F0(z, n), Go(z,n) are defined in (4.61), (4.62), and Ho(z,m,s)is given by:

Ho(z,m,s) = HA(z,m)+ sHB(z, rn)

_ (m + s) z + (mQla + Q3s) Fo(z,s) + (Q-_3 + rnQ_) Go(z,s) dz.(4.84)- Q33

This mode of deformation, which satisfies the equilibrium Czluations up tile first

power of/3, depends on three parameters m, n, s, and has a total of nine fields

(three more fields than the/3o model).

4.1.3 The Model Characterized by/32

To find the mode of deformation for the model wlfich satisfies the equilibrium

equations up to the second power of/3, we differentiate (4.30) to (4.35) t_ice with

respect to ,3 and let/3 = 0. Upon hltegration of the resulting differential equations,
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we have for the real part:

_o_(,)

_.2(z)

po_(,)

---- Cl FA(Z) +c2 KA(z) +mz +aoFB(z,m) +boFc(Z,m) (4.85)

-- CaGA(Z)+C, KA(Z)+z+aoGB(z,m)+boGc(z,m) (4.86)

= f2 +al HA(z,m) +b, HB(z,m) + Hx(z,m) (4.87)

where

FB(Z, m)

Fc( z, m)

as(z,m)

Gc(z, ._)

Hl(z,m)

and

MA(z, m) =

MB(z,m) =

NA(z,m) =

z (MA(z,_Q.zM.(z,m)Q4_ - mnA(z,m)_dz/ (4.88)
.Io k Q44Q55 - Q_5 2'

= fz {NA(z,m)_Q**-_NB(z,m)Q,_-mHs(z,m))dz (4.89)Q44Q_5- Q_5

= ff (Ms(,,m)Q44Q55Q55-_MA(z,m)Q_5O4s HA(z,m))dz (4.90)

= f_ _,fNB(z'm)Q55-Q_4Q_-"Q-_45NA(z'm)Q45_ HB(z, m))dz (4.91)

fz (m2 Q13 + 2mQ36 +Q23) zdz (4.92)
-- Jo Q33

l[( )Qn + 2 mQa6 + m 2 Q66 - (mQ13 + Q36) mQ13 + Q36
Q33 Fa(z)

+(Q28 + re(Q,: + Qc_) + m _O,6 -(023 + mQ36) mQ'3Q_+ Q:_ ) KA(Z)

mQ13 + Q36 ]

Q33 mz] dz (4.93)

)Qes + re(Q12 + Qc_) + m 2 Qa6 - (mQ13 + Q36) Q'3 + mQ3_
Q_ FA(z)

+ (Q22 + 2 _Q:6 + m _Q66 - (Q:3 + mQ36)Q23 +m_Q36"_ l(a(_)
\

Q23 + mQ38 ] dz (4.94)
Q33 m z ]

;[(Q26 + rn(Q12 + Q66) + m 2 Q16 - (mQ13 + Q36) Q23 Qa3 j GA(Z)

q-(Q'l + 2 rrtQ,6 q'- 'rrt,2 Q66 -(mQ13 q" Q36) _t'Q'3 + Q36) l.i.,A(Z)Qa3
\ /

Q13 + mQ36 ]

Q:n zj dz (4.95)



XB(z,m) =

105

/z [(Q22 + 2mQ26 + m2 Qe_ -(Q2a + mQa6) Q2a+ mQa_'_-Og ; a,,(z)

Oaa+ mOa, ]

Qaa zj dz (4.96)

The mode of deformation corresponding to the f12 model can be written in the

following form:

_(x,y,z) = <(:_,y)FA(z)+ _2(x,v)KA(z)+ _3(:_,y)z +

_4(x, y) FB(z,m) + i,5(x,y) Fc(z,m) (4.97)

_(x,>z) = ;,6(x,v)GA(z)+ _7(x,y)K_(z)+_8(x,y)z +

/_9(x, y)Gs(z, m) + fqo(x, y) Gc(z, m) (4.98)

IZz(X,B,Z ) --" /_ll(X,y) -at- _12(X,y)HA(Z,I'Ft) + _tl3(x,y)HB(Z,?'I't)-Jr-

t_4/-/1 (z, m). (4.99)

This mode of deformation now contah_s fourteen fidds: 5_(x, y), ..., 514(x,y).

Again, to reduce the number of fields we impose additional constraints as in the

cases of the _ and fll models:

<0(_,y)=t_(z,y)

(4.100)

(4.101)

(4.102)<_(_,y)=_(x,y)

where n, s, t are arbitrary constants. The displacement field (4.97)-(4.99), can be

written in the following way:

,_(x,>z) = <(_,v)[F_(_)+_KAz)]+_(_,y)z+



uy(x,y,z)

u_(z,y,z) =

1_4(X, y ) [FB(Z, TTt) .of. t Fc(z, m)]

_7(x,y)[_ G_(z)+ t(_(z)] + _(x, y)z +

_9(_,y)[GB(z,_) + t ac(z, m)]

/_,l(x, y) + _12(x,y) [HA(z,m) + s HB(z,m)] +

_14Hl(z,m)
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(4.103)

(4.1o4)

(4.105)

which can be rewritten as:

u,(x,y,z) "- u,(x,y)Fo(z,n) +u4(x,y)z +ur(x,y)Fl(z,m,t) (4.106)

u_(x,y,z) = u2(x,y)Go(z,n) +us(x,y)z +us(x,y)G,(z,m,t) (4.107)

u_(x,y,z) -- ua(x,y) + u6(x,y) Ho(z,m,s) + ug(x,y) Hl(z,m) (4.108)

where Fo, Go, Ho, H1 have been previously defined, and

Fl(z,m,t) = FB(z,m)+tFc(z,m)

i'(Mo(z,m,t)Q44-No(z,m,t)Q4s= Q44Qss - Q}5 - mHo(z,m,t)) dz
(4.109)

and

Gl(z,m,t) = GB(z,m) + tGc(z,m)

f_(No(z,m,t)Qss-Mo(z,m,t)Q45Q44Qss - Q#5 - Ho(z,m,t)) dz (4.110)

Mo(z,m,t) MA(Z, ra) + t NA(Z, zn)

l[( )Qn + 2 mQ16 + m _ Q66 - (mQla + Qa6) mQla + Qa_ Fo(z,t)
Qaa

( .-, ,mQla+Qa6)+ Q26+m(q12+Q66)+m_Q26-(Q2a+mc4asl Q_a Go(z,t)

-(m+ t) mQla + Qa¢ zt dz (4.111)
Qaa J



No(z,m,t) MB(z, m) + t NB(z, m)

IZ [ (Q2_ + m(Q1: + Q66) + m2 Ql_ - (mQla + Q36)

+(Q:_ + 2 mQ26 + m 2 Qe_ - (Q23 + mQ3s)
\

-(re+t) Q23 + mQ36 z] dz.
Q33 J
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Q:3+ mQ_6"_Fo(z,t)
Q33 J

Q23+ mQ_'_
-_ ) ao(z,t)

(4.112)

This mode of deformation satisfies the equilibrium equations up to the second

power of/_, and comprises nine fields and four parameters m, n, s and t. By

continuing this process, the equilibrium equations can be satisfied to an arbitrary

power of/3.

4.2 The Limiting Case with Respect to /3 _ 0

One of the definitive properties of a hierarchic sequence of models is that each

member converges to the same limit as the exact solution of the corresponding

three-dimensional problem as h --. 0. The exact solution minimizes the potential

energy with respect to all functions u,(x, y), i = 1, 2,... for which the strain energy

is finite. The limit for each plate model is obtained in a similar way as done for

the laminated strip. The process can be summarized as follows:

1. Start with the expression of the potential energy for the plate:

1 _ Vh/_

+vyz 7yz)dx dy dz

orz % _y ey (rz ez 7"_y7xy T_:z7zz+ + + +

= q(z,y)_(_, y,h/e)dx@. (4.113)
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For a given plate model the strain components are computed from the corresponding

displacement expressions, the strains and stresses are written in terms of the dis-

placements and its derivatives, and integrated through the thickness (z-direction)

to obtain the material coefficients. These coefficients form the laminate material

stiffness matrix [El. Rewriting the potential energy in terms of [_:

1

g=_ l/a ([D]{u})r [E][D]{u}dxdy- //a q(x,y)uz(x,y,h/2)dxdy (4.114)

where [D] is the differential operator matrix relating the strains and displacements,

and {u} denotes the displacement vector function. In the case of the _ model, the

potential energy expression is:

i E'\-5Jx) +2E_az az +E_\ax) +E4 +

oy oy + E_t oy ) + E_ +2 0= Oy + _ --_ +
OulOul 0ul 0u2

£-,lou_+ 2E. u. us + E_ ul + 2£.3 0x Oy + 2£_4_ Oy +

2E_sOu20ul _ Ou2 Ou3 Ou3Ox cgy +2E16 c_y + 2 E17 ul -_'xx + 2 Els u2 -'_'xx +

2 E19 ul "_ + 2 F-_o U2 dx dy -

(4.115)

where:

= V h/2
E, = Fh/_QnFo_dz, Ea j-h�2 @6FoGodz (4.116)

J-h�2

_. F h/2 _. F hI2
E3 j-h�2 Q66G2°dz' E4 j-h�2 Q66F°2dz (4.117)

= =
£,5 j-_,/2 Q_6 Fo Godz, E6 J-a/2 Q22 G_o dz (4.118)
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= f+h/2 = f+h/2
F__ j-h�2 Q55 dz, Es J-h�2 Q45 dz (4.119)

.-- .- ;h/2
;h/2Q44dz, E,o y-h�2 Qss(F_)_dz (4.120)j-h�2

= ;hi2 ;h12
E,, y-h�2 Q4sF/)G_dz, E,2= y-h�2 Q.(Gg)2dz (4.121)

= f+t,/: = f+t,/:
E,3 y-t,�: Q,6 Fo2dz, E,4 j-t,�: Q12 Fo Go dz (4.122)

__ = ft,/:
ft'/2Q66Foaodz EI_ y-h�2 Q_6G_odz (4.123)El5 J-J,�:

_. ;t,l: r+t,12
El7 J-t,�2 Q55 F_ dz Els "- J-t`�2 Q45 G_)dz (4.124)

E,9 J-t`�: Q45 YO dz Eao j-n�: Q44 Gg dz. (4.125)

For the /31 model, there are 55 nonzero terms in the laminate material stiffness

matrix and 138 nonzero terms in the case of the/32 model.

2. The Euler equations are obtained by taking the variation of the potential energy

with respect to each of the field functions ui(x, y), (i = 1, 2, ..., T_f), nf being

the total number of fields in the model.

01I OH OII 5ui,u 0
= + -_-_ 6ui,_ + =5II(ui) _-[_ui i,_ oui,y

(4.126)

where

Oui Oui (4.127)

Using Fourier transform, the ELder equations are transformed emd the system of

linear equations in the transformed field variables U,((, _7) is constructed:

[A] {U} = {R}. (4.128)
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The matrix [A] dependson the material stiffnessmatrix [£-1,and on the Fourier

variables_ and 7/,and {R} is the load vector obtained from the transformation of

the potential of the external forces.

3. The dements of [E] are computed for different stacking sequencesand the

system of equationsare solvedfor Era.Note that ua(x, y) is the equivalent to the

displacement component %lo(X) in the laminated strip, which was shown to be the

dominant function.

D(_, 7/) Ua = B(_, 7/)Q (4.129)

where

D(_, _) = D1 (a + D2 _ 7/+ Da 7?a +/)4 (4 + D5 (a 7/+

D6 _2 r12+ Dr _ rla + Ds 17 4 Jr''' (4.130)

is the determinant of [A],

.B(C,7)= & + B,_2+ _{_+ &,_ +-. (4.131)

is the determinant of [A] when the third row is replaced by the load vector {R},

and Q({, r/) is the Fourier transform of q(x,y).

4. The limit analysis with respect to h --+ 0 is performed and the following coeffi-

cients are defined:

Di
for i = 1 ---, 3, j = 1 ---, 3 (4.132)

Aj = D-A for i= 4 _ 8, j = 1 --+ 5. (4.133)
Bo
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Note that B0 is the first non-zero term of B((, _) and does not depend on ( and 77.

Neglecting derivatives of higher than fourth order, we obtain the general equation:

(al _2 + a_ _ T/+ a3 V2)U3 +

(_, _4+ A_3_ + A3_2_2+ A4_ + A_4)u3 = Q.

Denoting w(x, y) = ua(x, y), equation (4.134) has the following form after perform-

hag the inverse Fourier transform:

where (xa, a2, c_3 and )_1, A2, ..., As depend only on the material coefficients E,

defined before.

If the hierarchic plate model being evaluated converges to the proper limit, then

the coefficients c_, must be zero. This is because all models must converge to the

solution of the problem of elasticity as h _ 0. It has been shown [1] that the

Kirchhoff model is the limiting case for the infinite strip of isotropic material with

respect to h _ 0. For the laminated strip (Chapter 3), which is a special case of the

laminated plate, the limit aaalysis showed that the governing differential equation

contains only fourth order derivatives. Therefore, mfless the coefficients c_, are zero,

the governing equation would be a second order partial differential equation.

When ai (i = 1, 2, 3) are not zero then the material properties have to be

adjusted. The coefficients _, may require adjustment also, so that they will have
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the samevaluesas thosemodels tlmt convergeto the same li_mit as the theory of

elasticity with respect to h _ 0.

Following this procedure, and using the symbolic manipulation program Math-

ematica 1, it was found that the model characterized by/3 ° is not a member of the

hierarchy because ai _ 0. However, making the transverse shear moduli constant

through the thickness, as it was done in the case of the strip, c_i become zero.

In the case of the strip, closed form solutions could be obtahaed and the govern-

hag differential equations determined in terms of the material coefficients. Bc:v_use

of the complexity of the problem in the case of the plates, it was impossible to

determine the coefficients ai and Ai for all hierarchic models and for representative

stacking sequences, by other than numerical methods. Tile following approach have

been adopted: The results obtained for the laminated plate were tested numerically

for the following stacking sequences which are representative of practical problems:

1. Three-ply laminate: 90/0/90, h=l,

2. Three-ply laminate: -45/+45/-45, h=l,

3. Three-ply laminate: -30/+30/-30, h=l,

4. Five-ply laminate: 0/.901010010,h=l.

For each stacking sequence the values of the [E] matrix were computed, aa:d the

resulting system of equations are solved for w(x, !/).

1Mathematica: A system for doing mathematics by computer. Wolfram Research Inc. {Version

1.2, July 1990)
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The model characterized by/3o required two modifications of material prop-

erties: One to satisfy the requirement that the a, - 0, the other to satisfy the

requirement of having the same values of Ai as the other members of the hierarchy.

The 31 and _ models did not require any modification of the material properties

to satisfy either requirement.

From experience acquired with the laminated strip, it was expected that by

making the transverse shear moduli constant through the thickness, the coefficients

ai would become zero. As in the case of the strip, the transverse shear moduli Q44

and Qs_ of each layer were made equal to the harmonic averages Q44 and Q55:

= (_2 ! )-'044 _hJo Q44(z)dz (4.136)

= (2 1 )-'Oz5 _hJo Qss(z)dz (4.137)

while Q45 was made equal to the average (_4s:

2 rh/2

= Q, (z)dz. (4.138)

The other modification in the material properties needed for adjusting the values

of Ai in (4.135), such that they are the same as the other models, was obtained

from the condition that plane stress constitutive relations are used for each layer

(k). To accomplish that, the following modifications are sufficient:

_(k) _(k)

(3{k.) = O!k) _3 _3 i, j = 1, 2, 6 (4.139)

where the ._,jO{k)axe the material properties of the kth layer in the laminate coordinate

system. These modifications in the material properties are equivalent to those used



114

for laminated strip models. The modification of the transverseshearmoduli is the

counterpart of E6 constant in the laminated strip, while the modification in the

in-plane moduli is the counterpart of substituting E1 by El - E22/F-a in the r0

model for the laminated strip (see Chapter 2).

The results of the numerical study are shown in Table 4.1 for the three hierarchic

models. Two sets of values are presented for the _ model: One for the case in

which the modifications in the material properties discussed above are implemented

(fl°m); and the other for the case in which the modification in the shear moduli are

included but not in the in-plane moduli (/_).

These results indicate that tile 30 model, without modifications to account for

the plane stress conditions in the constitutive equations (/_), would converge to a

different limit as h _ 0. When the full set of modifications are introduced (/3°m),

the values of the coefficients A; are almost identical to those of the higher order

models. The differences observed in the values of Ai for the j3°,n and/31 models are

very small and vary depending on the stacking sequence. The largest difference

(0.28%) occurs for the stacking sequence 3, in the coefficient h4. For the other

stacking sequences, the differences are below 0.01_. The largest difference between

the coefficients of the/31 and/32 models (0.01%), occurs in the coeffidents A1 and

A4 for stacldng sequence 2, while for the other stazking sequences the difference is

below 0.005%
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Table 4.1: Values of the Coefficients Ai in [in-lb] for Four Stacking Sequences

MODEL

_2

d 1

_2

d2

_2

STACKING

SEQUENCE

90/0/90

h=l

-45/+45/-45

h=l

-30/+30/-30

h=l

0/90/0/90/0

h=l

163634

157802

157816

157810

602293

595134

595200

595139

1227055

1219115

1219140

1219119

1679640

1671512

1671564

1671565

1859309

1859309

1856500

1856472

2397643

2397643

2395101

2395059

222595

208438

208415

208421

3153926

3153926

3154000

3153957

2432075

2417554

2417636

2417578

222595

208438

208331

208332

_4

0

0

0

0

1852309

1859309

1856500

1856472

822774

822774

820488

820450

2022943

2014295

2014304

2014303

602293

595134

595200

595139

223028

216609

216629

216613

506937

500585

500639

500638
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These results demonstrate that for the representative cases investigated, all the

models converge to the same limit as h _ 0, provided that the material properties

of the _ model are adjusted as discussed herein.

One important observation from this numerical study is concerned with the

classical plate model for laminated plates. The differential equation for mid-plane

symmetric laminated plates with the assumption of plane stress conditions and that

nonnals to the middle surface of the plate prior to deformation remain straight and

normals after deformation (classical plate model assumptions) is given by [35]:

04w c_w
Du _x 4 + 4 9,60x30y + (2 D12 + 4 D66) 04w c_w 04_..__wOx2Oy------.7 + 4 D26 cgxOy----"5 + 1922 69y4 -" q

(4.140)

where:

= F hI2
Dij J-h�2 Qij z 2 dz. (4.141)

The coefficients Dij are equivalent to Ei. In the case of the /30 model, for

instance, the transverse shear moduli are made constant through the thickness and

they can be factored out from the expressions of Ei. In that case the following

relations exist:

Dll - E1 - A1, D22 -= E6 = A5 (4.142)

4 D16 = 4 F-.'2= A2, 4 D26 -- 4 Es - A4

2D12 +4D66 = 2E14 +4E4 = )_3

{4.143)

(4.144)

Therefore, there is a reasonable expectation that equation (4.140) is the limiting

case of the corresponding problem of elasticity provided the plane stress constitutive
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equationsare used.When the three-dimensionalconstitutive equationswereused,

the valuesof the coefficientshi are thosegivenin Table 4.1 for the case _ and the

proper limiting case is not obtained.

4.3 Sensitivity Study

The influence of the parameters introduced in each member of the hierarchic se-

quence of models is evaluated munerically in this Section. The unknown displace-

ment components ui(x, y), i ----1, 2, ..., are solved by means of an experimental

program developed for the solution of laminated plates, which is based on the

p-version of the finite element method.

Using this program, the e.xa:nples problems described in Chapter 5 were solved

for various combinations of the parameters m, n, s and t. The strain energy of

simply supported 3-ply rectangular plates with uniform load was used to assess the

influence of the parameters, and the results are presented in Figures 4.1 to 4.8. The

material for the laminae is the same material used for the laminated strip problems,

with two stacking sequences, 90/0/90 (cross-ply laminate) and -45/+ 45/- 45

(angle-ply laminate). The width to thickness ratio was kept at a/h = 4, and the

aspect ratio of the plate (b/a) was either 1 or 3.

The parameter n in the/30 model (see equations (4.58)-(4.60)) lms no influence

on the solution. Tlds is because n is absorbed in the unknown functions ul (x, y)
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and u2(x, y) computed in the finite element solution when the transverse shear

moduli are made constant through the thickness of the plate.

The influence of the parameters m, n, s in the solution of a cross-ply laminate

corresponding to the _i model is shown in Figure 4.1 for b/a = 1 and in Figure 4.2

for b/a = 3. Figure 4.3 stmanarizes the results for both aspect ratios. In all these

figures, the vertical axis shows the strain energy relative to the one obtained solving

the same problem with a three-dimensional finite element program (see Chapter 5

for details). The horizontal axis gives the values assigned to the variable parameter

of each curve. The results indicate that there is no influence of the parameter n in

the results, while m and s have different influence depending on the aspect ratio of

the plate. For instance, an increase in s improves the solution for b/a = 1, but does

the opposite for b/a = 3. A similar observation applies for the parameter m, but

in the opposite direction..An increase in rn reduces the quality of the solution for

b/a = 1, but improves the solution for b/a = 3. Figure 4.4 indicates that there is

no influence of either one of the parameter in the solution of the cross-ply laminate

and for both aspect ratios.

The influence of the parameters m, n, s, t in the solution of a cross-ply laminate

corresponding to the/3 2 model is shown in Figure 4.5 for b/a = 1 and in Figure 4.6

for b/a = 3. For b/a = 1 an increase in m and t increases the strain energy of the

solution, but while varying t produces a converging situation, the variation of m

conduces to an unbounded increase in the strain energy. For b/a = 3, increasing
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t makes the strain energy to decrease, while increasing the value of m makes the

strain energy of the solution to decrease first (for m < 4) and to increase after the

value of m "- 4. In both cases there is no influence of the parameter n and almost

no influence of s.

For the angle-ply laminate the results are shown in Figure 4.7. Again, there is no

influence of the parameter n and also no influence of s. The other two parameters,

m and t, have different influence depending on the aspect ratio of the plate.

All of the results presented in Figures 4.1 to 4.7 were obtained varying one

parameter at the time while the other three remained constant and equal to unity.

Figure 4.8 show the sensitivity study performed for the _2 model for twenty seven

different combinations of the parameters m, n, s, t and for a square, cross-ply

laminated plate. In this case the strain energy of the solution is presented and a

band of 4-3% around the reference solution is indicated. These results are also

shown in Table 4.2.

The results consistently indicate that the influence of the parameters included

in each model of the hierarchy is relatively small in terms of the strain energy of

the solution. Taking all parameters equal unity appears to be the logical choice

based on the results of the present sensitivity study.



120

Table 4.2: Sensitivity Study-t3= Model. Simply supported 90/0/90 squareplate

(a/h = 4). Influenceof m, n, s, t.

Case rn n s t Strain Energy

No. (Xl0 5)

1 1 1 1 1 0.7111145

2 1 5 1 1 0.7111145

3 5 1 1 1 0.7256553

4 1 1 5 1 0.7116944

5 1 1 1 5 0.7207993

6 5 5 1 1 0.7256553

7 1 5 5 1 0.7116944

8 1 5 l 5 0.7207993

9 1 1 5 5 0.7213676

10 1 5 1 5 0.7207993

11 5 1 5 5 0.7375296

12 5 5 5 1 0.7252634

13 1 5 5 5 0.7213676

14 5 5 1 5 0.7379180

Case rn n s t Strain Energy

No. (xl05)

15 5 5 5 5 0.7375296

16 2 1 1 1 0.7128474

17 3 1 1 1 0.7158803

18 4 1 1 1 0.7202610

19 6 1 1 1 0.7315889

20 7 1 1 l 0.7376230

21 8 1 1 1 0.7439399

22 9 1 1 1 0.7488515

23 10 1 l 1 0.7537713

24 1 1 2 1 0.7116491

25 1 1 7 1 0.7116989

26 1 [ 1 2 0.7165587

27 1 1 1 7 0.7215842
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Figure 4.1: Cross-ply square plate. Influence of m, n,

the solution.
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Figure 4.2: Cross-ply rectangular plate. Influence of m, n, s on the strain energy

of the solution.
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Figure 4.3: Cross-ply square and rectangular plate. Influence of m, n, s on the

strain energy of the solution.
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Figure 4.4: Angle-ply square and rectangular plate. Influence of m, n, s on the

strain energy of the solution.
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Figure 4.5: Cross-ply square plate. Influence of m, n, s, t on the strain energy

of the solution.
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Figure 4.6: Cross-ply rectangular plate. Influence of m, n, s, t on the strain

energy of the solution.
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Figure 4.7: Angle-ply square and rectangular plate.
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Chapter 5

Laminated Plate Examples

Plate models must be evaluated with reference to the corresponding three dimen-

sional problem. Therefore the first task was to establish reliable reference solutions

of the model problems, viewed as three-dimensional elasticity problems. The com-

puter code MSC/PROBE was used for this purpose. It is important to remember

that we try to assess the errors of modeling, namely to be able to determine how

well eazh member of the hierarchic sequence of models approximates the solution

of the three-dimensional elasticity problem.

The quality of each reference solution was controlled by selecting the finite

element mesh such that the relative error in ener_v nonn was low; observing the

convergence of the functionals of interest and verifying overall equilibriur_ In some

cases, when the length-to-width ratio of the plate v_nas increased, the estimated error

in energy norm also increased. In such cases the reference solution was used only to
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computetile transversedisplacements.The error in strain energy(and consequently

in displacements)is the squareof the error in energynorm. If the error in energy

norm for a givensolution is 10%for instance,the error in the displacementsshould

be about 1%. However,the errors in the derivativesare moresensitiveand cannot

be usedfor reference.

Using the finite elementmethod as our solution tool meansthat we are intro-

ducing errors of cliscretization. If the errors of discretization are large, then it is

not possibleto assessthe errorsof modeling.

The casesconsideredtry to covera widerangeof combinationof the parameters

that have influence on a plate problem. For instance, in a laminated plate it is

possible to vary:

• the nmterial properties,

• the number of layers,

• the stacking sequence,

• the thickness of each layer,

• the plate width-to-thickness ratio (a/h),

• the plate length-to-width ratio (b/a),

• the bounda_ conditions,

• the type of loading, etc,
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which makethe numberof casesto be analyzedvery large,if onewishesto coverall

possiblecombinations.If only threevariationsof eachoneof the aboveparameters

wereinvestigated,the total numberof combinationswouldbe512. If for eachoneof

thesecasesweobtain the referencesolutionand the solutionsfor all three members

of the hierarchic models describedin Chapter 4, the total number of analyses is

2,048. Finally, if for each one of the 2,048 cases, the solution is obtained for p-levels

ranging from 1 to 8, the total number of solutions is 16,384.

In the examples analyzed in the following sections several parameters were se-

lected to be constant: The material properties of all layers are the same and only

one material is considered; the type of loading is not varied; all layers are of equal

thickness and the boundary conditions are homogeneous.

5.1 Description of Example Problems

Consider a rectangular plate of uniform thickness h and planar dimensions a and b,

composed of perfectly bonded elastic orthotropic layers, symmetrically distributed

with respect to the middle plane, (Fig. 5.1). A uniform load q(x,y) is applied as

a normal traction to the top (q/2) and bottom (q/2) surfaces of the plate, and all

layers in the laminate are of equal thickness, and are of a square synmletric uni-

directional fibrous composite material possessing the following stiffness properties,

which simulate a high-modulus graphite/epoxy composite:

EL "- 25.0 x 106 psi Er = 1.0 x 106 psi
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GLT -- 0.5 × 106 psi Crrr -- 0.2 × 106 psi

lILT -- _ -" 0.25

where L indicates the direction parallel to the fibers, T is the transverse direction,

and ULT is the Poisson ratio (i.e., VLT = --6TT/eLL, where eT-r, eLL are, respectively,

the normal strains in the directions T and L). These material properties were

selected from reference [18]. It is important to note, as was pointed out by Pagano

in [18], that the highly anisotropic nature of the selected material represent a severe

test for any laminated plate model.

Y

Z

a

Figure 5.1: Model problems: Notation.

X

When the L direction coincides with the x direction, we refer to it as the 0 = 0 °

orientation. For a three-ply laminate a designation 90/0/90 means that the central
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lamina is oriented with the L direction parallel to the global x-axis, and in the two

outer layers L is at 90 ° with the global x-axis.

As mentioned earlier, the reference solutions were obtained using the finite

element program MSC/PROBE, and the solutions for the plate models were ob-

tained with an experimental program developed during this investigation, in which

the algorithm described in Chapter 4 was implemented. In the reference solution

obtained with MSC/PROBE each layer was discretized as a three-dimensional el-

ement with orthotropic material properties. The solution was obtained for p-levels

ranging from I through 8. The solution corresponding to p = 8 will be used as the

basis for comparison.

The solutions corresponding to the proposed hierarchic sequence of models were

obtained using only one laminated plate element. The polynomial degree was varied

from 1 through 8 and the equilibrium equations were satisfied up to the second

power of/_.

The model that satisfies the equilibrium equations up to the zeroth power of

was modified to satisfy the requirement of converging to the same limit as the

problem of elasticity with respect to h ---, 0, as described in Chapter 4. To accom-

plish that, the transverse shear moduli Q_ and Q55 of each layer were made equal

to the harmonic averages (_44 and _)_9, while Q45 was mMe equal to the average

Q45. In the case of three layers, for instance, the harmonic averages are:

0 =a 1 05 =a (51)



and the average is:

The superscripts (1),

following changes were also introduced for each layer (k):

_{k.) c)!k) Wi3 Wj3 i, j = 1, 2, 6.

_33
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( +2 . (5.21

(2) refer to the central and outer layer respectively. The

(5.3)

These modifications in the material properties are equivalent to the ones introduced

for the laminated strip models. The modification of the transverse shear moduli

(5.1), (5.2) is the counterpart of E6 constant in the laminated strip, while the

modification of the in-plane moduli (5.3) is the counterpart of substituting E1 by

E1 - E]/E3 in the ,2° model for the laminated strip (see Chapter 2).

We will denote the modified model characterized by/3 0 with/3°m. No modifica-

tions are necessary for the other members of the hierarchy as discussed in Section

4.2. The following normalized qumltities are defined to present the results at a

given location (xn, yn, zn):

1

(5"5, cry, _y) -- q(a,, cry, r,_) (5.4)

(_, _y) = _ h2
qa a (us, uy) (5.6)

u_ = 1°°_h3 u_(_' Y"'°) (5.7)
qa 4

where q is the applied traction, h is the tlfickness of the plate and uz(xn, y,,, O) is

the vertical displacement of the nfiddle plane of the plate at x = x,,, y = y,,.
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° Cross-ply laminate with all four edges simply supported (only the transverse

displacement uz is set to zero: soft simple support) and two aspect ratios

(b/a = 1 and b/a = 3). The influence of the number of layers and other

boundary conditions in the central deflection of square plates were also inves-

tigated.

2. Angle-ply laminate with all four edges simply supported, two aspect ratios

(b/a = 1 and b/a = 3) and two ply orientations (-45/-t45/-45 and -30/-440/-

30). Other ply orientations and boundary conditions were also considered.

For those problems in which the estimated error in energy norm was larger

than 5%, only the values of the displacements are reported. In those cases the

error of dicretization become too large to allow proper assessment of modeling

errors in terms of stresses. Table 5.1 shows the estimated errors in energy norm

at p = 8 for all cases considered in the folloMng sections. Even though the errors

of discretization can be controlled by mestdng and by p-extension, limitations of

the experimental computer program imposed certain restrictions. The reported

values of the estimated error in energy norm are the best that could be obtained

with the experimental code. For those cases in M:ich the error in energy norm of

the plate models was larger than 5%, and the error of the solution obtained with

MSC/PROBE was also large, only the displacements were compared.
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Table 5.1: Estimated Relative Error in Energy Norm (%) at p = 8

MODEL a/h b/a=l

90/0/90

/30 0.15

_3_ 4 0.58

/32 0.67

MSC/PROBE 0.40

/3o 0.35

_31 10 0.57

32 0.60

MSC/PROBE 0,19

/3° 1.38

_I 20 1.24

_2 1.16

MSC/PROBE 0.28

/3o 1.89

/31 100 1.97

32 2.Ol

IVISC/PROBE 0.08

b/a=3

90/0/90

0.34

0.50

0.50

0.44

1.82

2.14

1.94

1.01

3.39

3.32

3.32

0.67

1.49

1.63

1.65

0.07

b/a=l

-45/45/-45

0.35

2.29

2.57

3.27

2.36

2.28

2.20

1.94

6.80

8.44

8.39

3.12

b/a= 1

-30/30/-30

0.29

2.30

2.56

2.84

2.77

3.49

3.76

1.55

6.17

7.51

7.49

2.88

13.20

10.30

10.15

15.61

14.09

11.39

11.17

14.03

b/a=3

-45/45/-45

4.73

3.91

3.44

1.73

5.66

5.12

5.15

3.70

6.61

5.50

5.53

4.59

9.15

9.0O

8.99

11.26
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5.2 Cross-ply Laminate

In this Section the results for cross-ply laminated plates are presented. Two cases

were analyzed in detail: A three-ply square (b/a - I) simply supported plate, and a

three-ply rectangular (b/a - 3) simply supported plate. For these cases the results

include deflections, normal and shear stress distributions, and estimated relative

error in energy norm for the three hierarchic models and for the reference solution.

Also included is the influence of the number of layers in the end deflection of

a square plate with one edge clamped and the other three edges free. Finally, the

central deflection of a three- and a five-ply plate with two opposite sides simply

supported (soft simple support) are included.

5.2.1 Square Plate

The results for a three-ply orthotropic (or cross-ply, 90/0/90) simply supported

square plate are shown in Fig. 5.2 to Fig. 5.15 and sttmmarized in Table 5.2. In all

cases the results are those corresponding to p = 8. The load consisted of a uniform

normal load q(x, y) half of which was applied on tile top surface, half on the bottom

surface of the plate. The support conditions on all edges of the plate are those of

a soft simple support, i.e. only the transverse displacement is set to zero on each

edge (uz - 0).

Figure 5.16 shows the mesh used for the reference solution of the cross-ply lam-

inate obtained with MSC/PROBE for the length-to-tlfickness ratio of 10. Due to
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symmetry, only one fourth of the plate was considered in the analysis. Snmll ele-

ments were used near the edges of the plate to limit the influence of tile singularities

coming form the boundaries. The same mesh configuration was used for all a/h

ratios. Figure 5.17 shows the deformed configuration.

Fig. 5.2 shows the central transverse displacement of the plate as a function

of the a/h ratio. For large a/h ratios all models yield similar results. As a/h

decreases, the 30 model underestimates the deflection while the 31 and 32 models

remain very close to the MSC/PROBE solution. A very small difference between

the/31 and/T models is also observed in this case. See also Table 5.2, column

U,(a/2,a/2,0).

The in-plane displacements _x(O,a/2, z), fi,(a/2,0, z) for two a/h ratios are

shown in Figures 5.3 to 5.6. The solution of the/30 model can only produce linear

variation for the in-plane displacements. For a/h = 10 tiffs approximation is close

enough, but for a/h = 4 the approximation is very different from the reference

solution and the other members of the hierarchy. Note that the 31 model is in

excellent agreement with the reference solution, but can only produce piecewise

linear approximation. The _ model on the other hand, gives results that are

almost indistinguishable from those of the reference solution.

The normal stress distributions O, (a / 2, a /2, z ) , 5y (a/ 2, a/2, z ) for a/ h = 4 and

a/h = 10 are shown in Figures 5.7 to 5.10. The 30 model underestimates the

maximum normal stress ey by 4070 for a/h = 4 (Fig. 5.9) and 1070 for a/h = 10
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Table 5.2: NormalizedStressesand Displacementsfor a Simply Supported90/0/90

SquarePlate (b/a = 1)

MODEL a/h u_

(a/2,a/2,0)

30 2.720

31 4 3.019

32 3.051

MSC/PROBE 3.122

l_° 1.037

31 10 1.149

32 1.156

MSC/PROBE 1.172

3 o 0.764

31 20 0.796

32 0.798

MSC/PROBE 0.802

if3 0.670

31 100 0.672

_ 0.672

MSC/PROBE 0.673

(a/2,a/2,h/2)

1.53

1.87

1.88

1.90

4.98

5.21

5.24

5.24

15.59

14.66

14.67

14.68

351.2

309.4

309.3

310.4

_y

(a/2,a/2,h/2)

11.05

15.71

17.55

18.30

79.04

86.02

87.67

88.30

324.3

330.3

332.0

332.8

8142

8098

8100

8105

vz::

(O,a/2,0)

2.47

2.31

2.26

2.01

4.80

4.60

4.63

4.31

8.93

8.70

8.72

8.63

43.29

42.77

42.28

45.13

Tyz

(a/2,0,0)

2.65

1.88

1.87

1.87

7.24

6.44

6.41

6.51

14.69

14.18

14.13

14.13

74.27'

73.83

73.82

74.09
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Figure 5.2: Simply supported orthotropic (90/0/90) square plate: The function

U=(a/2,a/2,0).

(Fig. 5.10). Those figures for the 31 and ,,32 models are (14_, 2.6%) and (4%,

0.7%), respectively. For low a/h ratios, there is a big improvement over the/3 0

model due to the presence of the piecewise linear terms in the displacement field

in the 131 model and from the piecewise quadratic terms of the ,32 model. For large

a/h ratios, the quality of the _ solution greatly improves. As mentioned earlier,

low order models provide adequate response for large a/h ratios, but behave poorly

for low a/h ratios. The 5"_ stress distribution is very closely represented by all the

models for both a/h ratios (Figures 5.7 and 5.8).
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The transverseshearand normaJstresseswere computedby integration of the

equilibrium equations.Thein-plane stresseswerecomputedfrom tim finite element

solution directly, that is by computing the first derivatives of the displacement

components,but equations(4.21), (4.22)and (4.23) were usedfor computing the

transverseshearand normal stresses:

"=== -J0 \_ + dz + c, (s.s)

f=yo_-_yO_y'_dz+C_ (s.9)
"_==-J0 \-57 + ay)

fo=(a__=O_'_dz+c_ (s._o)¢==- kOz + Oy}

where C1, C_ and C3 are integration constants determined from the stress condition

at the surface of the plate. For zero stmar stress at z = =i=h/2 and zero normal stress

at z --O, we have:

T::= jo t a +-_),_- ft a +9-_) _.- (5.1,)

Ty: Jo t,_ + dz- dot, Ox + dz (5.12)

a, - \ Ox + i)y j dz (5.13)

The transverse shear stress distributions at the mid-section of two adjacent sides of

the plate are shown in Figures 5.11 to 5.14. Observe that there is oifly a veD, small

difference between the/31 and the/32 models. The similarity of shear stresses for

the fll and/_ models ,_as observed in the case of the laminated strip also. To fully

reproduce the shear stress prone, a higher order model is required. It was shown in

the case of the strip that the/33 model is suffident for producing excellent results.
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Nevertheless,the resultsgiven by the _1 and 92 modelsarevery satisfactory. The

transversenormal stressat the middle of the plate is shownin Figure 5.15.

Figures 5.18 and 5.19 show the estimated relative error in energy norm as a

function of the number of degreesof freedom for p-levels ranging from 1 to 8.

Similar convergenceis observedfor all modelsand for the referencesolution. Note

that in all casesthe estimatedrelative error in energynorm is below 1_ for p = 8.

The convergencerate is algebraic(i.e., the relationship betweenthe energynorm

and the number of degreesof freedom is very nearly a straight line on a log-log

scale). This rate of convergenceis governedby the singularitiesassociatedwith the

four comersand the edges.
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In-plane Displacement
at x=O, y=aJ2, z/h
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Figure 5.3: Simply supported orthotropic (90/0/90) square plate: The function

fi,(O,a/2, z) for a/h = 4.

In-plane Displacement
at x=O, y=a/2, z/h
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Figure 5.4: Simply supported orthotropic (90/0/90) square plate: The function

a,(O,a/Z,z) for a/h = lo.
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In-plane Displacement

at x=a/2, y=0, z/h
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Figure 5.5: Simply supported orthotropic (90/0/90) square plate: The function

_y(a/2, O,z) for a/h = 4.

In-plane Displacement

at x=a/2, y=0, z/h
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Figure 5.6: Simply supported orthotropic (90/0/90) square plate: The function

_,(a/2,O,z) fora/h= _0.
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Normal Stress

at x=a/2, y=a/2, z/h
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Figure 5.7: Simply supported orthotropic (90/0/90) square plate: The function

_=(a/2, a/2, z) for a/h-4.

Normal Stress

at x=a/2, y=a/2, z/h
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Figure 5.8: Simply supported orthotropic (90/0/90) square plate: The function

5",(a/2, a/2, z) for a/h = 10.
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Normal Stress

at x=a/2, y=a/2, z/h
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Figure 5.9: Simply supported orthotropic (90/0/90) square plate: The function

O'y(a/2,a/2, z) for a/h = 4.

Normal Stress

at x=a/2, y=a/2, z./h

z/h
-0.5

-0.333

-0.167

0

0.167

0.333

0.5 I

-90 -45 0 45 90

Sigma_Y/q

For a,_=.lO: :

-M_/PROBE

..........Betaom

..... Beta 1

Beta 2

Figure 5.10: Simply supported orthotropic (90/0/90) square plate: The function

5"_(a/2, a/2, z)for a/h = 10.
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Shear Stress

at x=O, y=a/2, z/h
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Figure 5.11: Simply supported orthotropic (90/0/90) square plate: The function

_=(O,a/2, z) for a/h = 4.

Shear Stress

at x=O, y=a/2, z/h
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Figure 5.12: Simply supported orthotropic (90/0/90) square plate: The function

_z=(O,a/2,z) for a/h-- 10.
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Shear Stress

at x=a/2, y=O, z/h

z/h
-0.5

-0.333

-0.1670 .
0.167

0.333

0,5
0.0 1.0 2.0 3.0

Tau_YZ/q

_!!_!i!_i_!!!!!_!_i_i!i!_!_!!!_i!_!_!_!i!!!_!_i_!i_!_:!_!_!_!_i!_!_!i_!_!!!_

Figure 5.13: Simply supported orthotropic (90/0/90) square plate: The function

_'_,=(a/2,0,z) for a/h = 4.

Shear Stress

at x=a/2, y=O, z/h

z/h
-0.5

-0.333

-0.167

0

0.167

0.333

0.5
0.00 1.75 3.50 5.25 7.00

Tau_YZ/q

:M$C/PROBE

.... Beta Om

.......: Beta i

Figure 5.14: Simply supported orthotropic (90/0/90) square plate: The function

"_yz(a/2,0, z)for a/h = 10.



145

Normal Stress

at x=a/2, y=a/2, z/h

z/h
-0.5

0.25

Sigma_Z/q

Figure 5.15: Simply supported orthotropic (90/0/90) square plate: The function

5"=(a/2,a/2, z) for a/h =4.

Figure 5.16: Simply supported orthotropic (90/0/90) square plate: Finite element

mesh for the reference solution (a/h = 10).
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Z

Figure 5.17: Simply supported orthotropic (90/0/90) square plate: Deformed

configuration (a/h = 10).
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Figure 5.18: Simply supported orthotropic (90/0/90) square plate:

relative error in energy norm for a/h = 4.

b/a= 1, a/h= 10
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Figure 5.19: Simply supported orthotropic (90/0/90) square plate:

relative error in energy norm for a/h = 10.

Estimated
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5.2.2 Rectangular Plate

The stress distribution at representativelocations in a three-ply orthotropic (or

cross-ply, 90/0/90) simply supported rectangular plate (b/a -" 3) are shown in

Figures 5.20 to 5.23. In all cases the results are those corresponding to p = 8 and

a/h = 4. The loading and support conditions are the same as for the square plate.

The results are also stmmma-ized in Table 5.3 for several width-to-ttficlmess

ratios. The quality of approximation is similar to that obtained for the square plate.

Note that the approximation of the in-plane stress components is always better

than the approximation in the transverse shear stresses. Higher order models are

required to obtain a more precise shear stress distribution, as was shown in Chapter

3 for the laminated strip problem.

5.2.3 Other Cases of Cross-ply Laminates

The influence of the number of layers on the end deflection of a cross-ply square

plate with one side damped and the other three free is shown in Fig. 5.24 for three

different a/h ratios. In all cases the fibers in the outer layers were kept normal to

the clamped edge of the plate. Also included in the figure are the results of the

deflection computed using a simplified beam formula, which is valid for the case

a/h _ _o. According to reference [36], the end deflection of a cantilever beam of

length a and thickness h with uniform load q is:

qa---L (514)
8 Dn
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Table 5.3: Normalized Stresses and Displacements for a Simply Supported 90/0/90

Rectangular Plate (b/a = 3)

MODEL a/h Vz

(a/2, b/2,o)

/3° 11.00

B1 4 10.76

,_2 11.00

MSC/PROBE 11.04

_3° 8.421

_1 10 8.391

_2 8.431

MSC/PROBE 8.441

_o 8.014

_ 20 8.010

_2 8.021

MSC/PI_O BE 8.028

/3° 7.849

_1 100 7.849

/3_ 7.850

MSC/PROBE 7.858

(a12,b12,h/2)

6.65

6.72

6.88

6.87

41.75

39.42

39.52

39.59

166.7

155.7

155.6

156.0

4144

(a/2,b/2,h/2)

15.32

13.28

13.64

13.40

100,4

94.40

94.70

94.09

403.4

386.6

386.8

386.2

10070

(O,b/2,0)

5.93

5.46

5.42

5.09

14.92

14.34

14.37

14.04

29.63

28.94

28.96

28.53

147.0

3857 9709

3851 9703

3867 9735

144.1

144.1

149.4

ruz

(a/2, o,o)

2.81

2.18

2.18

2.31

7.89

7.54

7.49

7.70

16.33

16.12

16.09

16.52

81.38

80.27

80.27

81.32
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where

_ F -hl_
D11 J-his Qll z 2 dz. (5.15)

The deflection computed by the use of (5.14) is identified as 'Beam (a/h -.-, e_)'.

The results indicate that when the number of layers increases then the bending

stiffness of the plate decreases to a limiting value. The property of the laminate will

be square symmetric but not isotropic [37]. When the longitudinal and transverse

properties are equal, a material is called square symmetric. For the laminate this

e+h/2

Dll = j-hl /2 Qll z 2 dz

r-l-h/2

= D22= z dz.

means:

(5.16)

The influence of different boundary conditions in the central deflection of a

square plate is shown in Figures 5.25 and 5.26. Two opposite sides simply supported

and the other two sides free are considered in this case. The results are for a three-

and a five-ply laminate, and include the values of the deflection computed with

the plate models as well as with the previously evaluated strip models. As can be

observed both the plate and strip model yield similar results.
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Normal Stress

at x=a/2, y=b/2, z/h
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Figure 5.20: Simply supported orthotropic (90/0/90) rectangular plate: The func-

tion 5,_(a/2,b/2,z) for a/h = 4.

Normal Stress

at x=aJ2, y=b/2, z/h
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Figure 5.21: Simply supported orthotropic (90/0/90) rectangular plate: The func-

tion 5y(a/2,b/2,z) for a/h = 4.
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Shear Stress

at x=O, y--b/2, z/h
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Figure 5.22: Simply supported orthotropic (90/0/90) rectangular plate: The func-

tion _,,(0, b/2, z) for a/h = 4.
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Simply supported orthotropic (90/0/90) rectangnlar plate: The func-

tion ¢yz(a/2, O, z) for a/h -" 4.
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Normalized End Displacement
Influence of Number of Layers
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Figure 5.24: Orthotropic (90/0/90) square plate, one side clamped. Influence of

number of layers in U.(a/2, a, O).
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Figure 5.25: Three-ply square plate. Two sides simply supported: The function

U,(a/2,a/2,0).
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5.3 Angle-ply Laminate

In this Section we present the results for angle-ply laminated plates. There are three

cases which are analyzed in detail: A three-ply square (b/a = 1) simply supported

plate with a stacking sequence -45/+45/-45, a three-ply square simply supported

plate with a stacking sequence -30/+30/-30, and a three-ply rectangular (b/a = 3)

simply supported plate with a stacking sequence -45/+45/-45. As before, the

results include deflections, normal and shear stress distributions and estimated

relative error in energy norm for all three models and for the reference solution.

Also included is the case of a three-ply laminated square plate in which the

angle of the fibers in each layer was varied between 0 and 90 °.

5.3.1 Square -45/+45/-45 Plate

The results for a three-ply simply supported square augle-ply laminated plate are

shown in Fig. 5.27 to Fig. 5.33 for the stacking sequence -45/+45/-45. The

results are also shown in Table 5.4 for several a/h ratios. In this case the transverse

deflection computed for each hierarchic model shows a similar behavior as in the

case of the cross-ply laminate (Figure 5.27). Note however, that the difference

between the 3 ° model on one hand and the/31 , 3 _ models on the other is larger

than before. Also, the in-plane displacements (Figures 5.28, 5.29) and stresses

(Figures 5.30-5.32) for a/h = 4 show the same trend as in the cross-ply laminate.
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The _ model alwaysunderestimatesdisplacementsand normal stresses,while the

31 and _ models give _ch closer approximations.

Higher order models are required to obtain more precise shear stress distribu-

tions. The same situation holds for the transverse normal stress az (Fig. 5.33)

which was computed directly from the finite element solution. Tile transverse nor-

mal stress can also be computed by integration of the equilibrium equations as

described for the cross-ply laminate, and better results are obtained.

Comparing Figures 5.34, 5.35 with Figures 5.18, 5.19, the rate of convergence

for the angle-ply laminate is not as high as in the case of cross-ply laminate. The

relative error in energy norm at p = 8 is now larger for the same number of degrees

of freedom. The simply supported angle-ply laminate represents a less smooth

problem than the cross-ply laminate.

5.3.2 Square -30/+30/-30 Plate

The results for a three-ply simply supported square angle-ply laminated plate are

shown in Figures 5.36 to 5.43 for the orientation -30/+30/-30. In this case the

transverse deflection computed for eaz.h hierarchic model shows a similar behavior

as in the case of the -45/+45/-45 laminate (Figxtre 5.36). Note however, that

the difference between the A ° and the 21 model is larger than before, and that the

solution corresponding to the f12 model is farther apart from tlm/3 x model. The

results are also summarized in Table 5.5 for several width-to-thickness ratios.
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Table 5.4: Normalized Stresses and Displacements for a Simply Supported -45/+

45/- 45 Square Plate (b/a = I)

MODEL a/h u_

(a/2,a/2,0)

_o 2.410

/31 4 2.894

_2 2.952

MSC/PROBE 3.007

_o 0.994

BI I0 1.130

j32 1.147

MSC/PROBE 1.155

flo 0.741

E l 20 0.783

_2 (*) 0.789

MSC/PROBE 0.793

_3° 0.609

A1 I00 0.613

_2 (*) 0.613

MSC/PROBE 0.615

(a/2,a/2,h/2)

5.69

7.45

8.06

7.94

32.59

35.26

36.12

35.24

Txy

(a/2, a/2, h/2)

4.28

5.66

6.23

6.05

26.25

28.77

29.59

28.70

(0,a/2,0)

2.18

1.95

1.93

2.02

4.11

3.81

3.77

4.97

(*) Estimated relative error in energy norm larger than 5% for all models
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The in-plane displacements (Figure 5.37), normal stresses (Figures 5.38, 5.39

and 5.40), and shear stresses (Figures 5.41-5.43) for a/h = 4 show the same trend

as before. Note, however, that in this case the approximation in the transverse

shear stresses (Fig. 5.41) is not as close to the reference solution as in the previous

cases. The characteristics of the exact solution near the boundaries requires the

use of higher order models ff the shear stress distribution is of primary interest.

5.3.3 Rectangular -45/+45/-45 Plate

The results for a rectangular plate (b/a - 3) with ply orientation -45/+45/-45 are

shown in Figures 5.44 to 5.48. Even though the relative error in energy norm for

this problem is larger for the same a/h ratio than for the equivalent square plate

(see Table 5.1) the approximation for each hierarchic model is very similar to the

one obtained for the square plate with the same stacking sequence and for the case

a/h = 4.

The numerical results included in Table 5.6 for different width-to-thiclmess ra-

tios, combined with the information provided in Table 5.1, are indicating that the

characteristic of the exact solution is less smooth than for the square plate. In this

case for a/h = 10 the estimated error ill energy nora1 _as already larger than 5%

and no shear stress values are induded. However, in-plane normal stresses are less

sensitive than the transverse shear, and good convergence to the reference solution

can be realized.
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Table 5.5: Normalized Stresses and Displacements for a Simply Supported -30/+

30/- 30 Square Plate (b/a = 1)

MODEL a/h uz

(a12, a12, o)

/3o 2.374

_1 4 2.806

_2 2.897

MSC/PROBE 2.917

/3° 0.986

/3_ lo 1.098

_2 1.120

MSC/PROBE 1.123

/30 0.750

_1 20 0.783

Z 2 (*) 0.790

MSC/PROBE 0.792

/3° 0.636

_1 100 0.638

_2 (*) 0.639

MSC/PROBE 0.640

8.47

11.11

12.29

12.0

52.37

55.40

56.78

55.9O

_y

(a12,a/2, h12)

3.54

4.61

5.04

4.98

20.33

21.40

21.90

21.57

rz_:

(O,a/2,0)

3.05

2.71

2.69

2.38

6.28

5.97

5.95

6.01

Tyz

(a/2,o,o)

1.91

1.88

1.84

1.49

4.57

4.22

4.20

3.64

(*) Estimated relative error in energy norm larger than 5% for all models
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Table 5.6: Normalized Stresses and Displacements for a Simply Supported -45/+

45/- 45 Rectangular Plate (b/a = 3)

MODEL a/h UZ

(a/2, b/2, o)

/30 5.002

/31 4 6.204

_32 6.333

MSC/PROBE 6.388

/3o 2.572

/31 10 2.843

_2 (*) 2.875

MSC/PROBE 2.852

¢3° 2.189

/31 20 2.261

/_2 (*) 2.270

MSC/PROBE 2.278

2.041

/3x 100 2.044

/32 (*) 2.044

MSC/PROBE 2.050

(a/2,b/2,h/2)

11.47

14.41

15.37

[5.40

72.48

75.08

76.20

76.94

9.33

11.73

12.58

12.50

62.09

63.98

64.96

65.27

Tz:r

(o,b12,o)

3.33

3.05

3.04

2.74

(*) Estimated relative error in energy norm larger than 5% for all models

(a/2,o,o)

2.71

2.40

2.38

2.33
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5.3.4 Other Cases of Angle-ply Laminate

The influence of fiber orientation in the central deflection of a three-ply square

plate with two opposite sides simply supported (2-sides SS) and four sides simply

supported (4-sides SS) is shown in Fig. 5.49. In this case the a/h ratio was kept

constant at a/h = 10 an the orientation of the fibers in the central layer was varied

between 0 and 9@. The fibers in the outer layers were always at 9if' with the fibers

in the central layer, The results for the flo and _i models are included for each

boundary condition.

When all sides are simply supported, the central deflection of the plate Uz is

maximum when the central layer is either 0 ° or 90 °. As may be anticipated the

minimum deflection occurs for _9= 45 °. When two sides are simply supported and

the fibers in the central layer run parallel to the supported edges (8 = 0°), the

deflection is minimum. As _ increases so does the deflection, and the max/mum

takes place for 0 between 60 ° and 70 °.
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Figure 5.26: Five-ply square plate. Two sides simply supported:

U=(a/2,a/2,0).

The function
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Fig-ure 5.27: Simply supported angle-ply (-45/+ 45/- 45) square plate: The

function U=(a/2, a/2, 0).
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Figure 5.28: Simply supported angle-ply (-45/+ 45/- 45) square plate: The

function £z,:(O,a/2,z) for a/h = 4.
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Figure 5.29: Simply supported angle-ply (-45/+ 45/- 45) square plate: The

function fiy(O,a/2, z) for a/h = 4.
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Normal Stress

at x=a/2, y=a/2, z/h
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Figure 5.30: Simply supported angle-ply (-45/+ 45/- 45) square plate: The

function 5=(a/2,a/2, z) for a/h = 4.
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Figure 5.31:

Shear Stress

at x=a/2, y=a/2, z/h
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Simply supported angle-ply (-45/+ 45/- 45) square plate: The

function f=,(a/2, a/2, z) for a/h = 4.
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Shear Stress

at x=O, y=a/2, z/h

z/h
-0.5

-0.333

-0.167

o )
0.167

0.333

0.5
0 0.5 1 1.5 2

Tau_ZX/q

MS_ROBEi ::
•::> :+:.:+:::.:<: :.:+::: +:,:.:;<::; c :::::::::::::::::::::

2.5

Figure 5.32: Simply supported angle-ply (-45/+ 45/- 45) square plate: The

function+=(O,al2,z) for_/h = 4.
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Figure 5.33: Simply supported angle-ply (-45/+ 45/- 45) square plate: The

function 5",(a/2,a/2, z) for a/h = 4.
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Figure 5.34: Simply supported angle-ply (-45/+ 45/- 45) square plate. Esti-

mated relative error in energy norm for a/h = 4.
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Figure 5.35: Simply supported angle-ply (-45/+ 45/- 45) square plate. Esti-

mated relative error in energy norm for a/h = 10.
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Figure 5.36: Simply supported angle-ply (-30/+ 30/- 30) square plate: The

function Uz(a/2,a/2, 0).
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Figure 5.37: Simply supported angle-ply (-30/+ 30/- 30) square plate: The

function _2=(O,a/2, z)for a/h=4.



167

Normal Stress

at x=a/2, y=a/2, z/h
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Figure 5.38: Simply supported angle-ply (-30/+ 30/- 30) square plate: The

function 5",(a/2,a/2, z) for a/h = 4.
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Figure 5.39: Simply supported angle-ply (-30/+ 30/- 30) square plate: The

function #y(a/2, al2, z) for a/h - 4.
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Normal Stress

at x=aJ2, y=aJ2, z/h
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Figure 5.40: Simply supported angle-ply (-30/+ 30/- 30) square plate: The

function _:(a/2,a/2,z) for a/h = 4.
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Figure 5.41: Simply supported angle-ply (-30/+ 30/- 30) square plate: The

function _zz(O,a/2,z) for a/h = 4.
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Figure 5.42: Simply supported angle-ply (-30/Jr 30/- 30) square plate: The

function fy=(a/2,0, z) for a/h = 4.
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Simply supported angle-ply (-30/Jr 30/- 30) square plate: The

function _=y(a/2,0, z) for a/h = 4.
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Figure 5.44: Simply supported angle-ply (-45/+ 45/- 45) rectangular plate:

The fimction Uz(a/2,a/2, 0).
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Figure 5.45: Simply supported angle-ply (-45/+ 45/- 45) rectangular plate:

The function _(a/2, b/2,z) for a/h = 4.
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Normal Stress

at x=a/2, y=b/2, z/h
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Figure 5.46: Simply supported angle-ply (-45/+ 45/- 45) rectangular plate:

The function 5,(a/2, b/2, z) for a/h = 4.
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Simply supported angle-ply (-45/+ 45/- 45) rectangular plate:

The function _zz(O,b/2, z) for a/h -- 4.
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Shear Stress

at x=a/2, y=O, z/h
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Figure 5.48: Simply supported -45/+ 45/- 45 rectangular plate: The function

fvz(a/2, 0, z) for a/h = 4.
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Figure 5.49: Square plate, hffiuence of fiber orientation on & three-ply laminate:

The function U=(a/2,a/2, 0).
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5.4 Conclusions

1. The hierarchic modds for mid-plane symmetric laminated plates developed in

Chapter 4 have been tested by solving benchmark problems. Good correlation

between the proposed hierarchic sequence of models and a three-dimensional

reference solution has been found for a wide range of problems investigated.

2. All models converge to the same limit as the problem of three-dime_ional

elasticity with respect to h ---, 0. Adjustment of the materials properties

of the model characterized by/5 _ was required to satisfy this requirement.

The model characterized by _ is the Reissner-Mindlin model, generalized for

laminated composites, when the modified material properties are used (also

known as first order shear deformation model).

3. For a fixed plate thiclmess, as more members were added to the hierarchy the

solution was closer to the reference solution. Better approximation is realized

for the displacements and for the in-plane stress components even for low

order members of the hierarchy than for the transverse shear stresses. At

the boundaries, higher order models are required, in general. In some cases

models higher than /32 may be necessary to approx.qmate the shear stress

distribution as was demonstrated by tile examples in connection with the

laminated strip in Chapter 3.
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4. The class of problems investigated clearly demonstrated the capability of

the proposedhierarchic sequenceof modelsin approximating the solution of

the problemof three-dimensionalelasticity to the desireddegreeof accuracy.

Thus, thesemodels are suitable for obtaining both the structural and the

detailed responseof laminated plates.
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Chapter 6

Summary and Conclusions

The objective of this research has been to develop mathematical models for the

analysis of laminated plates. The choice of the proper model for a particular ap-

plication is problem dependent, that is, depends on the exact solution of the of the

corresponding fully three-dimensioizal problem, which in tiffs this investigation was

the problem of three-dimensional elastidty; the goals of computation; the degree

of precision required, and the method by which the data of interest are computed.

In general, the solution of the problem of three-dimensional elasticity in the

smooth interior regions is very close to the solution corresponding to the low order

model, whereas the solution near the boundaries is more complicated and thus

requires the use of higher models. Typically, investigation of structural response

can be performed with low order models but the investigation of strength response

requires high order models.
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For these reasons models have to be chosen adaptively. If the models are simple

(dassical plate model, first-order shear-deformation model) they are economical

and provide reasonable approximation to the structural response, bu_ fail to provide

accurate representation of the strength response. If the model is more elaborate

(high-order shear-deformation models, discrete-layer mode/s), they provide better

strength response at the expense of greater computational complexity, even for

those cases in which structural response was the only goal of the computation.

Hierarchic sequence of models make it possible to select the model best suited

for a particular analysis. In this investigation the question of how models should

be selected from a particular hierarchic sequence was not addressed. The main

idea is relatively simple. The transverse variation of the displacement functions

should be selected such that they are orthogonal or very nearly orthogonal in the

energy space. In that case tile size of the field functions u_li , lLyli, lLzli, measured in

the energy norm, _ give an indication of the importance of the ith term in the

hierarchy. One can expect that as i increases the size of U_l,, Uyli, U_.li will decrease.

The derivation of a hierarchic sequence of models for laminated plates was

first outlined for the particular ease of cylindrical bending (the strip problem)

and their performance was demonstrated on the basis of the degree to Milch the

equilibrium equations of the two-dimensional elasticity are satisfied. The powers

of the parameter fl, representing the degree to which the equilibrium equations

of are satisfied, have been used to identify members of the tfierarctfic sequence.
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The numerical implementation of this hierarctfic sequence of models proved their

capability of approaching the solution of the problem of two-dimensional elasticity

to the required degree of accuracy.

Hierarchic models for mid-plane symmetric laminated plates were also devel-

oped based on a single parameter t3. The powers of the parameter 3, representing

the degree to which the equilibrium equations of three-dimensional elasticity are

satisfied, have been used for identifying members of the hierarchic sequence. The

selection of a displacement field based on a single parameter, combined with the

proper selection of the constants in the transverse shape functions, resulted in a

sequence of models in which the number of fields added for each increment in the

power of/3 is three. In this way the increase in complexity, as more members are

added to the hierarchy, was minimized.

In the interest of computational efficiency, the tfierarctfic sequence of models

has been extended downward to include the models characterized by 3 0 and f31.

This required a modification of material properties, which is analogous to the gen-

erally accepted modification of material properties used in the Reissner-Mindlin

model for homogeneous isotropic plates. In fact, the model characterized by 3 o

is the Reissner-Mindlin model, generalized for lmitinated plates, when the modi-

fled material properties are used. In the special case, when the shear modulus is

independent of z, the hierarchic model is the Reissner-Mindlin model. The shear
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correction factor can be assigned arbitrarily since the requirements set for hierarchic

models are satisfied independently of the shear correction factor.

Good correlation between the proposed lfierarchic sequence of models and a

three-dimensional reference solution (MSC/PROBE) has been found for a wide

range of problems investigated. The class of problems investigated clearly demon-

strated the capability of the proposed hierarchic sequence of models in approxi-

mating the solution of the problem of three-dimensional elasticity to the desired

degree of accuracy. Thus the hierarchic framework described in this work allows

the development of reliable predictive capabilities for the structural and strength

responses of structural components made of laminated composites.
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Appendix A

Laminated Strip: Expansion of the Equilibrium

Equations up to the Third Power of/3

Differentiating equations (2.31)to (2.33) with respect to/3 three times and letting

/3 = 0, the following equations are obtained for the real parts:

(E6V'_3)'-(E6_2)'- E_g_- E,¢o, = 0

E t _( JoJ E_¢_-(_¢b_)' E_¢_, = 0.

(A.1)

(A.2)

Start with (A.1) and from (2.54) and (2.74):

(E6¢'_)' =

(E6¢'oJ' =

(E6<J' =

Integrating once:

E_¢'_ =

(E6'¢b2)' - _ {a, [_ + _Fo] +do-_y} + E, {a,Yo+doy}



then, integrating again:

¢,,_-- d_y + a3Fo(y) + al F_(y) + doF4(y)
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(A.3)

where:

E6(t); (t)

From (A.2), and using (2.62) and (2.72):

_ )E_2(t)_tdt - F3(t) } dt.

(E3_'o3)'= E6¢h+ (E_¢b2)'+ E6_1

(A.4)

+ (E_¢b_)'+ E6(boF,+cl)

+ boF1)+ b_

integrating once:

_'_ = bo _ -

+bo-_3 F2 - c1-_3 y + b2-_ Fo + -_3

+ b2y + F-_¢b2 + d



/ 1;{;[( } }' -- bo -- E_---Fo dy dy+
[ E3

y Eo Ea d E3 -_3F_

+_{_+_o}-_+_
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integrating again:

;{1;{;o[( }bo -- E_ - -- o - _ y y y+ F_ d y¢_ = E_ E_ E_

Ea y Ea dy

F1 F3

Because of symmetry d = 0, and calling b3 = f, we finally have:

g.,o_(y)= boF_(y)+b:_(y) - _A(y) +b_ (A.5)

where:

Additional transverse functions, to satisfy

(A.6)

the equilibrium equations up to

higher power of/3, are found following the same procedure described herein.
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Appendix B

Laminated strips: Computation of the

Transverse Functions for a 3-ply Laminate

The transverse functions Fo(y), F_(y), F2(y) and F3(y) are integrated for the 3-ply

laminate problem indicated in Figure B.1. The material properties are assumed to

be constant within each lamina.

Y

® L
®® _- ×r

Figure B.I: Three-ply laminate. Notation.



a) F0(y): from (2.39)

For lamina 1, we have

ry dt
Fo(y)= l ETO)"jo
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F0(y)= y

(B.1)

It is convenient to factor out a coefficient to avoid working with very small numbers,

so we will use the largest value of the material stiffness matrix on any lamina in

the laminate. Calling this quantity Ec, the new Fo(y) will be:

E¢
_o(y)= Z_Fo(y)= _ y.

Furthermore the overbar can be dropped since the E_ nmltiplying Fo(y) can be

absorbed in the constant a0 that multiplies Fo(y) in the expression for ¢o(y).

For lamina 2, we have:

or

e_,2 + _-_

_(Y)= G y+ _

The expressions of Fo(y) for layers 1 and 2 can be sttmmarized as follows:

where:

[ po Y

Fo(y) =
( Pl +P2Y

(B.2)

= E6--_



Pl "-

P2 "_

E_
E62"

b) F_(y): from (2.64) we have

?,(y)= _/_(t)

Using the same factor as before, we can write:

dt.

t,_"_°"+ E-_t dt.

For lamina 1:

(F,(y)= f £'' Ec +.__, tdt = + =qo

For lamina 2:

Fl(y) jo _1E61 -_'-_11 tdt + I_/2 -_ (p'+ t) + t dt

or

Finally:

where

S(_,)=qo_ + m +2_= _ + p,t ,,,/_

(y)= {qoy:
ql + q2 Y -}-q3 y2

1E_ (Ealqo =2E_,
qoh 2

ql -"
4

E_2
q2 = _ Pl

q3 --"

+,)
/F-a_ E_) h_ E2_ hi-- - ["_2 P_ + "_2 8 E32 P' 2

2
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(B.4)

(B.5)

(B.6)

(B.7)

(B.S)

(B.9)

(B.10)

(B.11)

(B.12)
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c) F_(y): from (2.75), and using (B.2) and (B.8)

Ea(t) Ea(t) t dt- F_(t) dt, (B.13)

For lamina 1:

F2(y)

_ 1 po t2 - } dtE31 / qo t2

= _ E,,- E_,)po--ff, -qo -_ =toy_.

The integration across lamina 2 is performed in a similar way as before, and we

finally get:

where:

F2(y) = / to y3

t tl + t2 y + t3 y2 + t4 ya

(B.14)

1(_o )to= 5 _ - qo
h, h_ _ h_

tl--t0-_--(_612 - ql)_- -- (_622 --q2)-_" (_ --q a)"_

7"1

t_ = _ - ql

t3 = _ - q2

t4 = _ - q3

ro = _ Eu po -

(r2= E12 Ea2 ] pl

(B.15)

(B.16)

(B.17)

(B.lS)

(B.19)

(t3.20)

(B.21)

(B.22)

(B.23)
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d) F3(y)" from (2.76)

; E_(t)F3(y)= Ea(t)tdt.

Performing the integration across lamina 1 and 2 we get:

= / z0y_
F3(y)

[ zl + z2 y2

where:

(B.24)

(B.25)

1 F_, (B.26)
Zo - 2_

[ 1 F-_2 ] h_ (B.27)zl = '4 8_2]

1 E_2 (B.28)
z_ = [_---_.

The integration of these and all other transverse functions can be performed nu-

merically, and for any number of layers. The direct integration for a 3-ply symmetric

laminate was performed to show the polynomial degree of some of the functions,

and to solve the example problems described in Chapter 3.
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Appendix C

Laminated Strip: Lamina Stiffness Submatrices

Consider the two dimensional model of a laminated strip shown in Figure C.1.

From equation (3.10) and (3.11), the stiffness matrix of lamina k is given by:

[K](k) = ; jykfk+'[OlT[E](k)[Ql dydx (C.1)

where [Q] is given in (3.8) and [L-] (k) by (3.12). When the equilibrium equations are

satisfied up the second power of _, a total of 36 submatrices (only 21 are different)

are contained in (C.1). Each submatrix of (C.1) is obtained in the following way:

;/2_'_ __ t_' _, ,_,x. (_._)[I¢,1]

Q31

g

Using the mapping (3.6), from (3.7): dz = _ d_ so we can write:

[t(11]
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Y,

Yk+2

Yk+l."

Yk'"

Yk-I -

' " _/.//.//.4
lamina k+ 1,

.-----:..:.-=----...-_ .__--.-_--..=-:_--.

................. -__--_'-:-_--:- k -:
•-..--- ...... = = = = _"=..-.=.._-..--_..-_-_-_.._..._-..--_--_-_-_--_-_-_---_-_--

×

Figure C.I: Laminated Strip. Notation

___._lk)._ f I f!/,_+, 2 ,_ ,,-.4.-1 t'!g_-+,

F,f,+,_,, ,v,_r, f_,-,+_k)_.,,_, .,,_,, T{,V}[,V, jdy4+ _y__ y_,,, {N}l._NJdyd4.

Evaluating the integrals across lamina k, and using the definitions of [I(_,], [M_,]

and [L,,] given in Section 3.1, we finally have for [t(1,]:

z 0,_+,-,,_)_,"I,,,,l+-_(y_+,-_)(I_,,l+i_,,l_)3g

+--_ h_e [M,,]. (C.3)

Similarly, the other submatrices of (C.1) are:

First row:

[K,_l=_"._2(y,L,-_,,_)[<,1+_"_*,,,[L,,]_" (c.4)g

[I(13 ] -- .._

[IQ4I = E_a_)Hs[L,,I +2K?)Hg[K,,I +_E{k)H,o[M,,I + E<6k)H,I[L,,1T (C.6)

[K,ol=_',_,,[K,,I+a" (-_,I_,,]+-,o>,h+_"_,I,,_,,,](c._)



Second row:

2

[I(231 = gE?) H3[IC, t] + E?)H4[L,t]

2_2 )/_,_[K_,]

[K2s]= _J'IH3_[IGI + _*)H37[L,l

Third row:
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(c.8)

(c.9)

(C.10)

(C.11)

(c.n)

(C.13)

[K331= _i _5[tG] + _*)H_ ([L.,] + [L.,]T) +5 6 _[M_,]

[1(341 -- 2 E?)H,6[I(st] + _k)I'II,[Lstl T + t_k)HlS[Lst] + _2_k)Hla[Mst]

2 _k)Hzs[t(.,] + (H39tL., ] + H40[L.tIT) + _ _k)H4a[M,, l

e_,)H_o[M,,].[tQ,]-- 2 E?)H27[I(,t] + E?)H2s[L,t] + E?)/-/29[L,t] T +7

Fourth row:

(C.14)

(C.16)

k)
2 E(4k ) H42[[(st] + _6 k) H43[Lst] "at-E(2k) H4_[L.,]T + -__ H4. [Zv-6l[K_I=

2 E? )H2o[I(,,] + E? ) (H2,[L,,]+ H22[L_,]r) +[K,d= ?

Fifth row:

(C.18)

(C.19)

(C.20)

2 k)
[K,,]= _ H,,[It,,l + _")H,_ ([L,,]+ [Z,,]T)+_Qk)H,.[M,,]



Sixth row:

where:

H1 = ;_+' y Fo dy
JYk

H3 - ;_+_ Fo dy
JY_

UYk

H7 -- ;k+_F_ F_ dy
JYk

k÷lH9 = y F_dy
dY_

H2 ;k+l= yF_ dy
dYk

I-I4= [_+'Fo,dy
Jy,,

H6 = ;_+_ Fo F_ dy
JY_

;k+t F( dy
//8 = Jy_ y

k+lHlO = Fl'dy
Jyk

FYk+I

Hn = /yl Fl dy

JYk

H15 = ;k+l F_ dy
JYk

H17 = ;_÷_ F1 F_ dy
JY_

JY_

=fl +' (F;) dy
JY_

H_4= fl_+_(F_)_ _y
JYk

H_6= _+_ Fi Fody
dYk

H,s =/Yk+'F{ Fo dy
JYJ:

H2o - ;_+' F1 F3 dy
Jyt.

H21 -- ;_+_F_ F_ dy
dye:

Y_ = f_+_Fl' F_'dy
JYk

= yF_dy
JY_

H:7 "- [_+_ Fo F3 dy
JY_

H_2 - ff_+_ F[ F3 dy
JY_

H_4 = ;_+_ y F3 dy
JYk

• k.._l _

H26 = f Fs dy

H_8= [_*_Fo F; dy
dY_

191

(c.23)



H29 - ;k+lF_ F3 dy
dYk

/'/3o = ;_+' F0' _ dy
JY_
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dyu

k.t-IH3s - y £_ dy
JY_

H37 = ;_+I F_ dy
JYk

H39 = Fk+I Fo F:[ dy
JYk

/-/32= /"Y'+'F3&' dy
dY_

k+lH34 = y F2 dy
JYk

k+lHa6 = F2 dy
JYk

H38 = ;_+t Fo F2 dy
dY_

k+lH4o = F_ F2 dy
JY_

H47 --

H49 =

H51 =

/_k+l ! t --

H41-" Jy I F_ F{ dy

/-t"43 = ;_+t F1 F_ dy
dYk

H4s = ;k+'F_ F_ dy
JYk

_y[+' ['2 F2'dy

j_y[+l F2 F3 dy

j_ykk+l t

Fi F3 dy

tH42 -- F1 r2dy
JYk

H44 "- F( F2 dy
Jyk

t-I_ = _+' (F2)2dy
JYk

fl (5,) dy
JYk

fY_+' F

H_ = [_+' F; F_'dy.
dYk

These 52 coefficients have to be evaluated for each lamina of the strip.

3-ply laminate indicated in Figure B.1, the following values are computed.

1. For lamina 1, using (B.2), (B.14) and (B.25):

f+a_l_ h_

_' = J-h,/2poy_dy= po
f+htl2

H3 = J-h,�2 po y dy =0

= ;ht/2
H2 J- ht/2 po y dy - 0

_- ;h1/2
H4 J- h_/2 Po dy = Po h x

For the



f+h_/2 2 y2 dy - p2o h_

= fl '::o # = h,

t"+h_/2 .3
Hg--/_h 2 qoy dy-OJ-h_/

Hs = J-h1/_ Po y dy = 0

=/.+h,l_ h_
Hs j-h_/_ 2 q° y2 =qo_-

111o= f+a_/2
J-h_/_ 2qoydy =0
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_h,/_ y2 h_ gs= qo =q°-i5= 5-
r+n_/2 2

Hi3 = ]-h_/2 2q°y3dy =0

/'/15 =/+h,/2
j- h_/2 2zo y dy = 0

H,7 = :h,/2 h_
j-J,_/2 q° P° y2 dy -'- qopo-_

H19 = [.+h_l_
j-1,_/2 2poqo y dy "- 0

H12 = :a'/2(2qoy)2 dy =q_o h_

H1_ = ].+h,/2
J-h_/_ Po qo y3 dy "- 0

t118 = :h_12 Y_
j-h_12 2qopo dy = 2H17

f+h,/2 y4 h_
H2o = j_h,/2 qo zo dy "-" qo zo 8-._

H_a -- :hal2 y3
j-hff: 2qozo dy =O

H_z = :n,/2 Y2 h?
J-h_/2 4qo zo dy -" qo zo "_

H_s = :h,12 h_
j-_,_/2 2z° y_ dy -- zo-_

H27 -" :h_ /2
J-a_/2 Po zo ya dy = 0

J-h_/2 Po Zo y_ dy -- Po zo 1-'2

j-h_ /_ 2 qo zo dy = O

H_ = :+_'_/_ y_
j-h_/_ zo dy = O

:-h,/_ z_ y_ dy = z° _ = "U

H2s -- :h_12 h 3
j_a_l: 2Po zo Y2 =PoZo:_

H3o :h_/2- 2po Zo ydy - 0
J- _ 12

H35 : hll_= 3toy_dy=O
J- h_/_

H32 Vh_/2= 2 Z20y3 dy = 0
J-hi/2

-- tO y4 dy = to
J-h_/2 "_

J-h_/2 to y3 dy = 0



_ [+h_/2 h_
H37 J-hi�2 3t° y2 dy = t° "_

-_ F hl/2
/'/3o J-ht/2 3p°t°y3dy = 0

Has j-ht/2 Pot°y4 dy =P°_°80

-- F hI/2
/'/4o J-at/2 Po to y3 dy = 0
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= Fht/2 h_
H41 j-h_/2 3 p° t° y2 dy = p° t° --4

H,3 F
= 3 qo to y4 dy = 3 qo to 8-0J-ht/_

-- Fht/2
H4s j-h_/2 6q° t° y3 dy = O

= F ht/2 3
H47 j-h,�2 t_ yS dy = O

_ Fht/2
H49 J-ht/: to zo yS dy = 0

Hs1 F hi/2 y4 hts
= 3 to 7-0 dy = 3 to 2:o"_j-h_/2

= [+hl/2
H42 J-at�2 qo to y5 dy = 0

H_ 2-h_/_ 2q°t°y4dy=2q°t°'_

Fhtl _ h_
H46 J-h,/2 t2°y6 dy = t2o= -_

H4s = J-h,�2Fh'/2 (3to y2):dy = 9t 2o_h_

=
H5o J-h_ l_ 2 t° z° y4 dy = t° z° "_

= F ht/2 y3
H52 j-h_/2 6 to zo dy = O.

2. For lamina 2, using (B.2), (B.8), (B.14) and (B.25):

where:

fh,t2+_,_ A2 + p__A_H, - ./h,12 _'Y + p2y2)dy = P'T

As = +h_ - -- ,

._ fht/2+h2 A2

H2 jh,/_ I_ y dy = p_ -_.

A2
= [h,/_+,,__, +_y)@ =p,_ +_THz jh_/2

H4 .-- fhl/2+h2

Jhtl: 192dy = P2 h2

hl/2+h2= +p_y) dy =p_h_ +plp_A_ + --
3

__ fht/2+h2

[_/_+_
H7 = Jh,/_ p_ dy = p_ h2
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with:

= [h,12+h2 A2 2 A3
H8 Jh,/2 (q2+2q3y)ydy--q2-_-I-_q3--_

(+)'A3= +h2 - , ,44= +h_ -

Hio- [ h'/2+h2
jh_/2 (q_ + 2q3y) dy - q:h_ + qaA2

I"Ill Jh_/2

= / hl/2-bh2 4 2

H_2 jh_/2 (q2 + 2qay)2 dy "- q_h2 + 2q2qaA2 +'3 q_A_

H13

Jh_/2

A2 2A3
-P q2q3A1 -.b q3 "_

H14 _.. iht 12+h2
Jh_/2 (q_ + q2Y + q3y2)2dy

_, AI .43 + .2,44
= q_h2 +qiq2A, +(2q_q3 +q_)--_- +q2q3--_" _3-'_"

H15 fh_/2+h2= 2 z2 y dy = zg.A2
Jh_/2

H16 = fl, (qi+q2y+qay2)(pl+p_y)dy
Jhi/2

A2 A1 A3
"- plqlh2"4-(piq2 +qlP2)'-_" + (Plq3 +P2q2)-'_- -_-P2q3"_'-

rhl/2+h2 .

Hl,:/a,i 2 (qi+q2Y+q3y2)p2dy--P2q, h2+p<xq2-_+P2q3+

2 , A2 A1
His -- fhU2+h2(pl "4-p2y)(q2 -4-2q3y)dy =plq2h2 + (P2q2 + Plq3)'-_ 4- 2p2q3"-_"

Jhl/2

jh_ 12 P2(q2 + 2q3y)dy = p2q2h2 + p'2q3A2
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1"I20 = [ht/2+h_jh,/2 (q' +q=v+qzY_)(zi+z_y_)dy

tht/2+h2 2 1 A
_ = ]_/_ (q,+ q_ + q_v_)(2z_y)@= q,z_A_+ gq_z_A_+ _q_z_

.-- [hl]2+h2

_/2+h2 4

H23 =/h_/2 (q2 + 2q3y)(2z2y)dy = q2z2A2 +-_q3z2A1

fhI/2+h2 1 A2 __H_4= ]h_/_ _z_v+ z_v_)dv= z_-_ + z_

.-- /ht/2+h2 2
H25 jh_/2 (2z2y2)dy = -_z2A_

H27 = f[hi
/2+J'2

Jhl/2

rh_/2+h_ A1

H_ = .../_/_(_, + z_v_)dv= z,h_ + Z2"_"

A2 A1 A3

(p_+ p_y)(z,+ z_y_)@= p,z_h_+ p_z,_ + piz_y + _z_-T

= [h,/2+h2 (PI +t_y)2z2ydy
H28 j_/2

rat/2+a2 /
H29 =/hi�2 p2(zl + z2y2)dy

2

= thz2A2 + _t_z2A1

A1
= t_z_h2 +t_z2-_

-- [ht/2+h_
H3o Jn_/_ 2 p_ z_ y dy = p_ z2 A2

fh_/2+h2 2 ___

thl /2 +h2

rhI/2+h_ -_ ,2- 4

_. [h_/2+h2
H34 Jhl,2 (tly+t2y2_3y3 +_4y4)dy :tl-_ +t2_ +t3-_ +_4--_

_/_+_ . A2 2 3/'/35 =/h 2 (tzy + 2t3y 2 + 3t4y3)dy = t2"_ + -_tzA1 + t4A3J_t/

rht/2+h2 t ,41 ___I-I36"--/h,/_ (ti +t2y+tay2 +t4y3)dy-t,h2+t2_ff + 3"_'+t4
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H37 ja,/2 (t2 + 2t3y + 3t4y2)dy = t2h2 + t3A2 + t4A_

H38

m

ht 12+h_

,/2 (Px + P2y)(& + t2y + t3y 2 + t4y3dy

t " Ax
p, tih_ +(Pl& +p_tx)@ + (pit3 +p2 2)--_-

t " A3 A4
+(p,t, + p_ _- +_t,- V

H39

rht/2+h2

= /h,/2 (P_ + P:_)(& + 2t3y + 3t4y_)dy

-- plt_h_ + (2pit3 +p2t2)_ + (3pit4 + 2pRt3)-_ +3p2t4A3

H4o = fM/2+h_ (& + t2y + t3y 2 + t4y3)p2dY
Jh_/2

A2 t A1 +p_t4_

= [h_/2+h_p2(&
H41 Jh_/2 + 2t3y + 3t4y2)dy = p2t2h2 +p2t3A2 + p2t4A1

with:

H42 -- hl/2+h2
t/2 (qt +q:Y+qzY2)(tl +t2y+taY 2 +t4y3) dy

t "A_
qltlh2 + (q,t_ +q: 1)T + (ql& +q2t2 + q3t,)-_

t "A3 t At ,45
+(q, t4 +q2t3 +q3 2)-_- +(q2t4 +q3 3)--_- + q3t4--_-

_ fa_/2+a2(qxq2u +q3Y2)(t: + 2&y + 3t4y2)dy
H48 jh_/_

qlt2h2+(2q,t3+q2t2)-_+(3qlt4+2q2t3+q3t2)_-_

-{-(3q2t4-4-2q3t3)2_- -_"3q3_4_55



H44 __ [hll2+h2jh_/_ (q_+ 2qzy)(t,+ t_y+ t_y_+ t_y_)@

-- q2tl_ + (q2t2 + 2q3t,)-_ _- (q2t3 -4- 2q3t2)

d

A_
+(q2t4 + 2q3t3)_ -b 2qat4--_
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_45
?hl/2+h2

= ...,L,/_ ('_ + 2q_y)(t_+ 2t_y+ 3t4y_)dy

-- q.t.h. -4- (2q2t. + 2qzt_)-_ + (3q_t4 + 4q3t3)-_ +6q3t4-_4

H46 _. [hl/2-l-h2 (tl + t2y + t3y2t4y3)2dy
Jht/2

_,A_ t:t_)_= t_h2+t]t2A_+ (2t_t_+ t_)y + (t]t_+ 2

_47 _ [h,12+h2 (t, + t2y + t3y 2 + t4y3)(t2 + 2t3y + 3tty2)dy
yh_/2

= t_t_h2 + (2t_t3 + t_)-_ + (t_t4 + t2t3)A_

2" A3 2A5
+(2t2t4 + t3)-- _ 4- t3t4A4 -4-t4- _

gr-_4$

rhl/2+h2

= /h,/2 (t2 +2t3y +3t4y2)(t2 +2t3y +3t4y2)dy

-- t_h2 + 2t2t3A2 + (6t2t4 +4t32)_ + 3t3t4A3 +9t_ A45

_49 -- fhl)i2+h_(tl+t2y+t3y2+t4y3)(zl+z2y_)dy

--- t_z, h2+t:zm--sff +(t,z:+t3z,) +(t_z2+t4z,)

t A_ A5
A- 3Z2"_ "4-t4z2-'_"



Hso ._ /hi/2+h2j,,1/2 (tl + t_ + t3y_+ t4y3)(2z_y)dy

- _lZ_÷_z___+_z___+_,z___
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gs1

4 3
- [h'12+h2(t_ + 2t3y + 3t4y2)(2z2y)dy -- t2z2A2 + -_t3z2A, + -_t4z_A3.H52 jh_12

The integration of these a.rld all other co_cients necessary to compute the stil_2ess

subnmtrices can be performed numerically, and for any number of layers. The direct

integration was performed to solve the model problems described in Chapter 3.
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Appendix D

Laminated Strip: The Load Vector

The load vector will be computed for the three-ply laminate indicated in Figure D. 1,

and for the case of the _ expansion of the displacement functions as given in (2.77),

(2.78).

qx/2

t t t t t t t _ t t { t t _ f

,t t t _ I' t t f _ f f t f
qx/2

Figure D.I: Three-ply problem Notation.

"-Xr
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The potential of the external forces was determined in Chapter 3, and is given

by (a.25):

eF, q=(_) e ;, q=(_)._'(u) =-_ _ uv(_,h/2)d_ +- _ 2 uy({,-h/2)d._>

but uy({,h/2)= u_({,-h/2)because of symmetry, then

2(u) = -_ q,({)uy({,h/2)d{ (D.1)

also from (2.78) and (3.3):

p+l p--bl p+l

For the case of q=(f) =constant = q, using (D.2) into (D.1):

/=l j=l

+F_(htOlF' "+'

but

1 N1 (_)d_-" 1, __11N2({') d_" = 1

F1 1 'Ni(¢)a¢=0, j=4,5,...,p+l.

,_"('U,)--" -'_((b_') .+.bll)-_2 b('),_,+ F1(h/:)(bl:)+ _:)

+£(hl2)(bl_)+b__) !b(_)_

then:

(D.4)



or

where:

LbO)J

Lb(_)j

• . . Vp+lj

•.. _,p+ij

= • . . Vp+lj

are the vectors of the unknown coefficients of the functions Uyli(X); and

Lr°)J = _ LI 1 - 2/v/6 o ... oJ

L#=)j= F_(h/2)_ kI I - 2/v_ 0 ... oj

Lr(a)J = F3(h/2)q'_£2 L1 1 - 2/v/6 0 ... 0J

are the load sub-vectors associated with the above unknown vectors.

Using expressions (B.8) and (B.25)"
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(D.5)

Fl(h/2) = q, +q2 z +qa (D.6)

Fa(h/2) = z, + z2 (D.7)

where ql, q2, qa, zl and z2 depend on the material properties and thickness of

each layer of the laminate, and are #yen in Appendix B. The global load vector is

obtained assembling the load sub-vectors computed above. For the 3 e model there

are six sub-vectors:

{R}= {LOJL#I)J LoJ L#=)JLoJL#a)J}T
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This is the expression of the load vector for a 3-ply laminated strip with uniform

loading on top and bottom surfaces to be used in (3.28).
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Appendix E

Laminated Strip: Computation of Engineering

Quantities

a) Horizontal displacements. After the finite element solution is obtained, the u,

displacement component for the ._ model at any given point across the laminated

is given by:

u,(_,y) = ([aI')Jy + La(2)JF0(y)+ ka(3)JFe(y)) {N(_)}.

For the simply supported case, the horizontal displacement at the support location

(x = 0, or _ = -1) will be:

uz(- 1, y) = a_l)y + a_2) Fo(y) + a_3)F2(y). (E.1)

Note that N1(-1) = 1, andN_(-1) =0, i = 2, 3, ..., p+l, and onlythe

coefficient al is included in (E.1) for each term of the expansion.



205

For lamina 1 of the model problems, using the results obtained in Appendix B for

the integration of the transverse functions, we have:

u_(- 1, y) = a?)y + a?)po y + a?)to ya. (E.2)

For lamina 2:

u_(-1,y)=_?)y+a?)(p_+_y)+_?)(t,+t_y+t_:+4y_). (E.3)

b) Longitudinal stress a_. To determine the longitudinal stress a_ we use equation

(2.6) and (3.8) as follows:

0u_ 2 .(a(1) +_[Nj2 , 2-- -- [N'J {a (a) } F_(y)

For the case E4 = Es = 0:

_x = Elex + E_

_(_,y) =
2
_EI[IVtJ ((a?)}y-l-(a (2) } Fo(y)+ {a (3} } F2(y))

(E.4)

For the problem of the infinite strip described in Chapter 3, the longitudinal

stress at the symmetry section (_ = 1) are:

_(1,y) =
9 pH-I

E1EN[(_- 1)(a!')y H-a?'Fo(y)+ a!3'F2(y))
i----1

+_ (b_)r_'(y)+bl_)_'(y)) (E.5)



For lamina 1:

For lamina 2:
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2 p+l

-" _ En_IN_(_: "- 1)(a!')y+a!:lpoy +a!3)toy a)

+2e_,(_, 5_)qoy+ 5_))zoy). (E.6)

"+' [42 ,._1 ' ')Y Y)+a!3)(tl+t2 +taY2a.(1,y) = _E_2 N_(_ = 1) +@)(p, +p_ y

c) Transverse shear stress r_9. Let us consider the equilibrium equation (2.2):

Or__j= o¢_ (E.8)
Oy O=

integrating across the thickness

From (E.4), we have

0¢._.5*
O=

then:

f 0¢_r_y= Ox dy + g(x). (E.9)

4

2

2LN'2({5(=)}fle_e;dy
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For the problem of the infinite laminated strip described in Chapter 3, the shear

stress _',y at the antisymmetry section (_ = -1) is obtained from (E.10).

For lamina 1:

T_V(--1, Y) --___LN#] ({a(1)}E11_-Jf-{a(2)}poEll_-_={a(3)}Ell_oY-_)

g

or

_'_y(-1, y) 4LN" ] El1 a(1)} -_-{ a(2) } P0 _- {a(3)} to 2"
-

For lamina 2:

h_ ___._2(y2 + [El lPO -_-_:_(-1,y) : -_LN"J({a(1)}[E1,'_ + --_)] a(2) h_

hi hl
+E12p_(y- -_)-F-_-_ p2(y2 - h-_)] -F {a(a)} [Ell to-_

_ t2, 2 _ t3 h_-FEi2tl(y- ) -F/_,2"_(Y - 4" -F EI2-_(Y3 __.)

t4 hl lea, h_

h_

h_
- +

where g(x) is determined with the condition of zero shear of the free surface:

_-_y(- I, h/2) --0

then:

_(_) _--SIN"][{a(1)} (Ellh21H-E12_)H-{a(2)}(Ellpoh-__-_
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+E12p, h2+E12P2 + {a(3)} Zxlto-_+Ea2(tlh2+t2

These are the expressions that have been used to compute the displacements

and stresses reported for the first model problem described in Chapter 3.



209

Vita

Date of Birth:

Place of Birth:

Undergraduate Study:

Graduate Study:

Professional Experience:

Pdcardo Luis Actis

6/3/52

Avellaneda, Argentina

University of La Plata, Argentina, 5-year degree in

Aeronautical Engineering, 1975

Washington University, Saint Louis, Missouri

M.Sc. in Mechanical Engineering, 1985

Washington University, Saint-Louis, Missouri

D.Sc. expected December, 1991

Structural designer, Luisoni and Associates,

Argentina, 1974-1975

Division Manager, National Institute of Industrial

Technology, Argentina, 1976-1983

Staff Engineer, FAC-'_, Inc., St. Louis, Missouri,

1985



TeachingExperience:

Structural and StressAnalysis Engineer,

Weld-Met International, Inc.,

St. Louis, Missouri, 1990-

TeachingAssistant, University of La Plata,

Argentina, 1976-1983

Assistant Professorof Aeronautical Engineering,

University of La Plata, Argentina,

1985-1987.

TeachingAssistant, WashingtonUniversity,

1988-

210

Publications:

1. R. L. Actis, "Effect of Geometryand Boundary Conditions in the Stability of

Circumferential Cracks in Pressurized Pipes", National Institute of Industrial

Technology, Argentina, May 1981. (in spanish).

2. R. L. Actis and O. Zannoni, "Residual Stress Measurements in Welded Plates",

II Scientific Latinoamerican Congress_ May 1984. (in spanish).

3. R. L. Actis, '°The Use of Fracture Mechanic in Design", A Course Book

published by the University of La Plata, April 1987. (in spaxtish).



211

4. R. L. Actis and A. D. Dimarogonas,"Non-linearEffectsdueto ClosingCracks

in Vibrating Beams", 12th Biennial ASME Conference on Mechanical Vibra-

tion and Noise, Montreal, Canada, September 17-20, 1989.

5. I. Babu_ka, B. A. Szab6 and IL L. Actis, "Hierarchic Models for Laminated

Composites", Center for Computational Mechanics, Washington University,

Report: WU/CCM-90/4, December 1990. Accepted for publication in the

International Journal for Numerical Methods in Engineez'ing.

6. R. L. Actis, "Hierarchic Models for Laminated Plates", D.Sc Dissertation,

Washington University, 1991.

December 1991



212

Bibliography

[1] B. Szabd and I. Babu/ka. Finite Element Analysis. John Wiley and Sons, Inc.,

New York, 1991.

[2] R. K. Kapania and S. Raciti. Recent advances in analysis of laminated beams

and plates, part 1: Shear effects and buckling. A.I.A.A. Journal, 27, No.

7:923-934, 1989.

[3] E. Reissner. On the theory of bending of elastic plates.

and Physics, 23:184-191, 1944.

Journal of Mathematics

[4] R. D. IVIindlin. Influence of rotary inertia and shear on flexau:al motion of

isotropic elastic plates. Journal of Applied Mechanics, 18:31-38, 1951.

[5] Y. Stavsky. On the Theory of Heterogeneous AnisotTvpic Plates. PhD thesis,

M. I. T., Cambridge, Massachusets, 1959.

[6] J. M. Whitney and J. N. Pagano. Shear deformation in heterogeneous

anisotropic plates. Journal of Applied Mechanics, 37:1031-1036, 1970.



213

[7] E. Reissner.On bending of elastic plates. Quarterly of Applied Mathematics,

5:55--69, 1947.

[8] J. M. Whitney. Shear correction factors for orthotropic laminates under static

load. Journal of Applied Mechanics, 40:302-304, 1973.

[9] A. K. Noor. A posteriori estimates for shear correction factors in multi-

layered composite cylinders. Journal of Engineering Mechanics, ASCE, 115,

No. 6:1225--1244, 1989.

[10] A. K. Noor, W. S. Burton, and J. M. Peters. Assessment of computational

models for multilayered composite cylinders. Analytical and Computational

Models of Shells, 3:419--441, 1989.

[11] A. K. Noor and W. S. Burton. Assessment of computational models for mul-

tilayered composite shells. Applied mechanics Review, 43:67-97, 1990.

[12] J. M. Whitney and C. T. Sun. A higher order theory for extensional motion

of laminated composites. Journal of Sound and Vibration, 30:85--97, 1973.

[13] K. H. Lo, R. M. Christensen, and E. M. A tfigh-order theory of plate defor-

rnation, part 1: Homogeneous plates; part 2: Laminated plates. Journal of

Applied Mechanics, ASME, 44:663-676, 1977.

[14] V. Chom_vah and X. J. R. A_tla. A tfigh-order theory for laminated com-

posite plates using lagrange multiplier technique. Computers and Structures,

37, No. 5:845-861, 1990.



214

[15] J. N. Red@. A simple higher-order theory for laminated composite plates.

Journal of Applied Mechanics, 51:745-752, 1984.

[16] J. N. Reddy and C. F. Liu. A higher-order shear deformation theory of lam-

inated elastic shells. International Journal of Engng. Sci., 23, No. 3:319-330,

1985.

[17] W. Gilewski and M. Radwandska. A survey of finite elements models for the

analysis of moderately thick shells. Finite elements in analysis and design,

9:1-21, 1991.

[18] N. J. Pagano. Exact solutions for rectangular bidirectional composites and

sandwich plates. Journal of Composite Materials, 4:20-34, 1970.

[19] J. N. Reddy and W. C. Chao. A comparison of closed-form and finite-element

solutions of thick laminated anisotropic rectangular plates. Nuclear Engineer-

ing Designs, 64:153--167, 1981.

[20] S. Srinivas. A refined analysis of composite laminates. Journal of Sound and

Vibration, 30, No. 4:495-507, 1973.

[21] M. Di Sciuva. An hnproved shear-deformation theory for moderately ttfick natl-

tilayered anisotropic shells and plates. Journal of Applied Mechanics, 54:589--

596, 1987.

[22] M. Di Sciuva. Development of an mfisotropic, multilayered, shear-deformable

rectangular plate element. Computers and Structures, 21, No. 4:789-796, 1985.



.r

215

[23] A. Toledano and H. Murakami. A composite plate theory for arbitrary laminate

configurations. Journal of Applied Mechanics, 54:181-189, 1987.

[24] E. Reissner. On a certain mLxed variational principle and a proposed applica-

tion. International Journal for Numerical Methods in Engineering, 20:1366--

1368, 1984.

[25] K. Bhaskar and T. K. Varadan. Refinement of highex-order laminated plate

theories. A.I.A.A. Journal, 27, No. 12:1830-1831, 1989.

[26] E. J. Barbero and J. N. Reddy. An accurate determination of stresses in

thick laminates using a generalized plate theory. International Journal for

Numerical Methods in Engineering, 29:1-14, 1990.

[27] D. Morgensteaaa. Herleidung der plattentheorie aus der dreidimensionalen elas-

tizitatstheorie. Arch. Rational Mech., 42:145-152, 1959.

[28] B. A. Szab6 and G. J. Sahrmann. Hierarchic plate aald shell models based

on p-extension. Intem_ational Journal for Numerical Methods in Engineering,

26:1855-1881, 1988.

[29] B. A. Szab6. Hierardzic plate and shell models based on p-extension. Analytical

and Computational Models of Shells, 3:317-331, 1989.

[30] I. Babu_ka and L. Li. The problem of plate modeling, theoretical and compu-

tational results. Technical Report BN-1116, Institute for Physical Science and

Technology, University of Maryland, December 1990.



216

[31] I. Babu_kaand L. Li. Hierardfic modelingofplates. Computers and Structures,

40, No. 2:419--430, 1991.

[32] C. Schwab. Dimensional Reduction for elliptic boundary value problems. PhD

thesis, University of Maryland, Department of Mathematics, College Park,

1989.

[33] D. N. Arnold and R. S. Falk. Edge effects in the reissner-mindlin plate theory.

In A. K. Noor, T. Belytschko, and The American Society of Mechanical En-

gineers J. C. Simo, editors, Analytical and Computational Models of Shells,

pages 71-89, 1989.

[34] F. B. Hieldebrand. Methods in Applied Mathematics.

Second Edition, 1965.

Prentice-Hall, Inc.,

[35] J. E. Ashton and J. M. Whitney. Theory of Laminated Plates. Progress in

Material Science Series, Volume IV. Wechnomic Publishing Co., Inc., 1970.

[36] J. R. Vinson and R. L. Sierakowski. The Behavior of Structures Composed of

Composite Materials. Martinus Nijhoff Publishers, 1986.

[37] S. W. Tsai and H. T. Halm. Introduction to Composite Materials. Tedmomic

Publishing Co., Inc., 1980.



Short Title: Hierarchic Laminated Plate Models Actis, D.Sc. 1991




